Xiaoyu is a PhD student co-advised with Laurent Girin. Xiaoyu investigates the use of complex deep generative models for multi-modal (audio-visual) processing. She applied these models to speech enhancement [1, 2]. Xiaoyu has also worked in mixtures of dynamical variational autoencoders, applied to source separation with audio and video data [3].
References
- X. Lin, S. Leglaive, L. Girin, and X. Alameda-Pineda, “Speech Modeling with a Hierarchical Transformer Dynamical VAE,” in IEEE International Conference on Audio, Speech and Signal Processing, 2023. [ bib | pdf ]
@inproceedings{Lin-ICASSP-2023, title={Speech Modeling with a Hierarchical Transformer Dynamical {VAE}}, author={Xiaoyu Lin and Simon Leglaive and Laurent Girin and Xavier Alameda-Pineda}, booktitle={IEEE International Conference on Audio, Speech and Signal Processing}, year={2023}, doi={10.1109/ICASSP49357.2023.10096751}, pdf={http://xavirema.eu/wp-content/papercite-data/pdf/Lin-ICASSP-2023.pdf} }
- X. Lin, S. Leglaive, L. Girin, and X. Alameda-Pineda, “Unsupervised speech enhancement with deep dynamical generative speech and noise models,” in Interspeech, 2023, pp. 5102-5106. [ bib | pdf | arxiv ]
@inproceedings{Lin-Interspeech-2023, title={Unsupervised speech enhancement with deep dynamical generative speech and noise models}, author={Xiaoyu Lin and Simon Leglaive and Laurent Girin and Xavier Alameda-Pineda}, booktitle={Interspeech}, year={2023}, pages={5102-5106}, doi={10.21437/Interspeech.2023-232}, arxiv={https://arxiv.org/abs/2306.07820}, pdf={http://xavirema.eu/wp-content/papercite-data/pdf/Lin-Interspeech-2023.pdf} }
- X. Lin, L. Girin, and X. Alameda-Pineda, “Mixture of Dynamical Variational Autoencoders for Multi-Source Trajectory Modeling and Separation,” Transactions on Machine Learning Research, 2023. [ bib | pdf | code | arxiv ]
@article{Lin-TMLR-2023, title={Mixture of Dynamical Variational Autoencoders for Multi-Source Trajectory Modeling and Separation}, author={Xiaoyu Lin and Laurent Girin and Xavier Alameda-Pineda}, year={2023}, journal={Transactions on Machine Learning Research}, arxiv={https://arxiv.org/abs/2312.04167}, code={https://github.com/linxiaoyu1/MixDVAE}, note={\url{https://openreview.net/forum?id=sbkZKBVC31}}, pdf={http://xavirema.eu/wp-content/papercite-data/pdf/Lin-TMLR-2023.pdf} }