
How To Train Your Deep Multi-Object Tracker

Yihong Xu1 Aljos̆a Os̆ep2 Yutong Ban1 Radu Horaud1

Laura Leal-Taixé2 Xavier Alameda-Pineda1
1Inria, LJK, Univ. Grenoble Alpes, France 2Technical University of Munich, Germany

1{firstname.lastname}@inria.fr 2{aljosa.osep, leal.taixe}@tum.de

Abstract

The recent trend in vision-based multi-object tracking
(MOT) is heading towards leveraging the representational
power of deep learning to jointly learn to detect and track
objects. However, existing methods train only certain sub-
modules using loss functions that often do not correlate with
established tracking evaluation measures such as Multi-
Object Tracking Accuracy (MOTA) and Precision (MOTP).
As these measures are not differentiable, the choice of ap-
propriate loss functions for end-to-end training of multi-
object tracking methods is still an open research problem.
In this paper, we bridge this gap by proposing a differen-
tiable proxy of MOTA and MOTP, which we combine in a
loss function suitable for end-to-end training of deep multi-
object trackers. As a key ingredient, we propose a Deep
Hungarian Net (DHN) module that approximates the Hun-
garian matching algorithm. DHN allows to estimate the
correspondence between object tracks and ground truth ob-
jects to compute differentiable proxies of MOTA and MOTP,
which are in turn used to optimize deep trackers directly.
We experimentally demonstrate that the proposed differ-
entiable framework improves the performance of existing
multi-object trackers, and we establish a new state-of-the-
art on the MOTChallenge benchmark. Our code is pub-
licly available at https://github.com/yihongXU/
deepMOT.

1. Introduction
Vision-based multi-object tracking (MOT) is a long-

standing research problem with applications in mobile
robotics and autonomous driving. It is through tracking that
we become aware of surrounding object instances and an-
ticipate their future motion. The majority of existing meth-
ods for pedestrian tracking follow the tracking-by-detection
paradigm and mainly focus on the association of detector re-
sponses over time. A significant amount of research inves-
tigated combinatorial optimization techniques for this chal-
lenging data association problem [39, 38, 45, 55, 7, 6].

Recent data-driven trends in MOT leverage the repre-
sentational power of deep networks for learning identity-

DeepMOT

Deep Hungarian Net DeepMOT LossDeep Multi-Object
Tracker

RGB
Images

Bounding
Boxes gradients

Figure 1. We propose DeepMOT, a general framework for train-
ing deep multi-object trackers including the DeepMOT loss
that directly correlates with established tracking evaluation mea-
sures [5]. The key component in our method is the Deep Hungar-
ian Net (DHN) that provides a soft approximation of the optimal
prediction-to-ground-truth assignment, and allows to deliver the
gradient, back-propagated from the approximated tracking perfor-
mance measures, needed to update the tracker weights.

preserving embeddings for data association [26, 47, 51],
learning the appearance model of individual targets [12, 56]
and learning to regress the pose of the detected targets [3].
However, these methods train individual parts of the MOT
pipeline using proxy losses (e.g. triplet loss [44] for learn-
ing identity embeddings), that are only indirectly related
to the MOT evaluation measures [5]. The main difficulty
in defining loss functions that resemble standard tracking
evaluation measures is due to the need of computing the op-
timal matching between the predicted object tracks and the
ground-truth objects. This problem is usually solved using
the Hungarian (Munkres) algorithm (HA) [25], which con-
tains non-differentiable operations.

The significant contribution of this paper is a novel, dif-
ferentiable framework for the training of multi-object track-
ers (Fig. 1). In particular, we propose a differentiable vari-
ant of the standard CLEAR-MOT [5] evaluation measures,
which we combine into a novel loss function, suitable for
end-to-end training of MOT methods. In particular, we in-
troduce a differentiable network module – Deep Hungarian
Net (DHN) – that approximates the Hungarian algorithm
and provides a soft approximation of the optimal prediction-
to-ground-truth assignment. The proposed approximation
is based on a bi-directional recurrent neural network (Bi-
RNN) that computes the (soft) assignment matrix based
on the prediction-to-ground-truth distance matrix. We then

1

ar
X

iv
:1

90
6.

06
61

8v
2

 [
cs

.C
V

]
 2

4
D

ec
 2

01
9

https://github.com/yihongXU/deepMOT
https://github.com/yihongXU/deepMOT

express both the multi-object tracking accuracy (MOTA)
and precision (MOTP) [5] as differentiable functions of the
computed (soft) assignment matrix and the distance matrix.
These then serve as a bridge to deliver the gradient needed
to update the tracker weights that are back-propagated from
the approximated tracking performance measures. In this
way, we can train object trackers in a data-driven fashion
using losses that directly correlate with standard MOT eval-
uation measures. In summary, this paper makes the follow-
ing contributions:

(i) We propose novel loss functions that are directly in-
spired by standard MOT evaluation measures [5] for
end-to-end training of multi-object trackers.

(ii) In order to back-propagate losses through the network,
we propose a new network module – Deep Hungarian
Net – that learns to match predicted tracks to ground-
truth objects in a differentiable manner.

(iii) We demonstrate the merit of the proposed loss func-
tions and differentiable matching module by training
the recently published Tracktor [3] using our proposed
framework. We demonstrate improvements over the
baseline and establish a new state-of-the-art result on
MOTChallenge benchmark dataset [34, 27].

2. Related Work
Tracking as Discrete Optimization. With the emer-
gence of reliable object detectors [13, 16, 28] tracking-by-
detection has become the leading tracking paradigm. These
methods first perform object detection in each image and
associate detections over time, which can be performed on-
line via frame-to-frame bi-partite matching between tracks
and detections [25]. As early detectors were noisy and un-
reliable, several methods search for the optimal association
in an offline or batch fashion, often posed as a network flow
optimization problem [38, 45, 55, 7, 6].

Alternatively, tracking can be posed as a maximum-a-
posteriori (MAP) estimation problem by seeking an opti-
mal set of tracks as a conditional distribution of sequential
track states. Several methods perform inference using con-
ditional random fields (CRFs) [35, 11, 37], Markov chain
Monte Carlo (MCMC) [36] or a variational expectation-
maximization [1, 2]. These methods in general, use hand-
crafted descriptors for the appearance model, such as color
histograms [35, 9], optical flow based descriptors [11]
and/or motion models [28, 37] as association cues. There-
fore typically only a few parameters are trainable and are
commonly learned using grid/random search or tree of
parzen window estimators [4, 37]. In the case of CRF-
based methods, the weights can be trained using structured
SVM [49, 52].

Deep Multi-Object Tracking. Recent data-driven trends
in MOT leverage representational power of deep neural net-
works. Xiang et al. [53] learn track birth/death/association

policy by modeling them as Markov Decision Processes
(MDP). As the standard evaluation measures [5] are not dif-
ferentiable, they learn the policy by reinforcement learning.

Several existing methods train parts of their tracking
methods using losses, not directly related to tracking eval-
uation measures [5]. Kim et al. [22] leverages pre-learned
CNN features or a bilinear LSTM [23] to learn the long-
term appearance model. Both are incorporated into MHT
tracking framework [39]. Other methods [26, 51, 47]
learn identity-preserving embeddings for data association
using deep neural networks, trained using contrastive [17],
triplet [44] or quadruplet loss [47]. At inference time, these
are used for computing data association affinities. Ap-
proaches by [12, 56] learn the appearance model of individ-
ual targets using an ensemble of single-object trackers that
share a convolutional backbone. A spatiotemporal mecha-
nism (learned online using a cross-entropy loss) guides the
online appearance adaptation and prevents drifts. All these
methods are only partially trained, and sometimes in various
stages. Moreover, it is unclear how to train these methods
to maximize established tracking metrics.

Most similar to our objective, Wang et al. [52] propose
a framework for learning parameters of linear cost associa-
tion functions, suitable for network flow optimization [55]
based multi-object trackers. They train parameters using
structured SVM. Similarly to our method, they devise a
loss function, that resembles MOTA: the intra-frame loss
penalises FPs and missed targets while the inter-frame com-
ponent of the loss penalises false associations, ID switches,
and missed associations. However, their loss is not differ-
entiable and is only suitable for training parameters within
the proposed min-cost flow framework. Schulter et al. [45]
parametrize (arbitrary) cost functions with neural networks
and train them end-to-end by optimizing them with respect
to the min-flow training objective. Different from [45],
our approach goes beyond learning the association function,
and can be used by any learnable tracking method.

Bergmann et al. [3] propose a tracking-by-regression ap-
proach to MOT. The method is trained for the object detec-
tion task using a smooth L1 loss for the bounding box re-
gressor. Empirically, their method is able to regress bound-
ing boxes in high-frame rate video sequences with no signif-
icant camera motion. Apart from the track birth and death
management, this approach is fully trainable, and thus it is
a perfect method for demonstrating the merit of our training
framework. Training this approach on a sequence-level data
using our proposed loss further improves the performance
and establishes new state-of-the-art on the MOTChallenge
benchmark [27].

3. Overview and Notation
The objective of any MOT method is to predict tracks

in a video sequence. Each track Xi is associated with an
identity i, and consists on Li image bounding boxes xi

tl
∈

2

R4 (2D location and size), l = 1 . . . , Li. The task of a
multi-object tracker is to accurately estimate the bounding
boxes for all identities through time.

At evaluation time, the standard metrics operate frame-
by-frame. At frame t, the Nt predicted bounding boxes,
xi1
t , . . . ,x

iNt
t must be compared to theMt ground-truth ob-

jects, yj1
t , . . . ,y

jMt
t . We first need to compute the corre-

spondence between predicted bounding boxes and ground-
truth objects. This is a non-trivial problem as multiple
ground-truth boxes may overlap and thus can fit to several
track hypotheses. In the following we will omit temporal in-
dex t to ease the reading. All expressions will be evaluated
with respect to time index t unless specified otherwise.

The standard metrics, proposed in [5], tackle this associ-
ation problem using bi-partite matching. First, a prediction-
to-ground-truth distance matrix D ∈ RN×M ,1 dnm ∈ [0, 1]
is computed. For vision-based tracking, an intersection-
over-union (IoU) based distance is commonly used. Then,
the optimal prediction-to-ground-truth assignment binary
matrix is obtained by solving the following integer program
using the Hungarian algorithm [25]:

A∗ = argmin
A∈{0,1}N×M

∑
n,m

dnmanm, s.t.
∑
m

anm ≤ 1,∀n;

∑
n

anm ≤ 1,∀m;
∑
m,n

anm = min{N,M}.

By solving this integer program we obtain a mutually
consistent association between ground-truth objects and
track predictions. The constraints ensure that all rows and
columns of the assignment should sum to 1, thus avoiding
multiple assignments between the two sets. After finding
the optimal association, A∗, we can compute the MOTA
and MOTP measures using A∗ and D:2

MOTA = 1−
∑

t(FPt + FNt + IDSt)∑
tMt

, (1)

MOTP =

∑
t

∑
n,m dtnma

∗
tnm∑

t |TPt |
, (2)

where a∗tnm is the (n,m)-th entry of A∗ at time t. The true
positives TP correspond to the number of matched predicted
tracks and false positives FP correspond to the number of
non-matched predicted tracks. False negatives FN denote
the number of ground-truth objects without a match. Fi-
nally, to compute ID switches IDS we need to keep track of
past-frame assignments. Whenever the track assigned to a
ground truth object changes, we increase the number of IDS
and update the assignment structure.

As these evaluation measures are not differentiable,
existing strategies only optimize the trackers’ hyper-

1The distance matrix D is considered without those objects/tracks that
are thresholded-out, i.e., too far from any possible assignment.

2Accounting also for the objects/tracks that were left out.

parameters (using, e.g. random or grid search) that maxi-
mize MOTA or MOTP or a combination of both. In their
current version, MOTA and MOTP cannot be directly used
for tracker optimization with gradient descent techniques.

4. DeepMOT
The first step to compute the CLEAR-MOT [5] track-

ing evaluation measures is to perform bi-partite matching
between the sets of ground-truth objects and of predicted
tracks. Once the correspondence between the two sets is
established, we can count the number of matches (TP),
missed targets (FN), and ID switches (IDS) needed to ex-
press MOTA and the average matched distance for MOTP.

As the main contribution of this paper, we propose a dif-
ferentiable loss that is inspired by these measures, follow-
ing the same two-step strategy. We first propose to perform
a soft matching between the two sets using a differentiable
function, parameterized as a deep neural network. Once we
establish the matching, we design a loss, approximating the
CLEAR-MOT measures, as a combination of differentiable
functions of the (soft) assignment matrix and the distance
matrix. Alternative measures such as IDF1 [41] focus on
how long the tracker correctly identifies targets instead of
how often mismatches occur. However, MOTA and IDF1
have a strong correlation. This is reflected in our results –
by optimizing our loss, we also improve on IDF1 measure
(see Sec. 5.3). In the following, we discuss both the differ-
entiable matching module (Sec. 4.1) and the differentiable
version of the CLEAR-MOT measures [5] (Sec. 4.2).

4.1. Deep Hungarian Net: DHN

In this section, we introduce the Deep Hungarian Net
(DHN), which is a fundamental block in our DeepMOT
framework. The DHN network produces a proxy Ã that
is differentiable w.r.t. the distance matrix D. Thus DHN
provides a bridge to deliver gradient from the loss (to be
described later on) to the tracking method. We formalize
DHN with a non-linear mapping that inputs a distance ma-
trix D and outputs the proxy assignment matrix Ã. DHN is
modeled by a neural network Ã = g(D, ωd) with parame-
ters ωd. Importantly, the DHN mapping must satisfy several
properties: (i) the output Ã must be a good approximation
to the optimal assignment matrix A∗, (ii) this approxima-
tion must be differentiable w.r.t. D, (iii) both input and out-
put matrix are of equal, but varying, size and (iv) g must
take global decisions as the HA does.

While (i) will be achieved by setting an appropriate loss
function when training the DHN (see Sec. 5.1), (ii) is en-
sured by designing DHN as a composite of differentiable
functions. The requirements (iii) and (iv) push us to design
a network that can process variable (but equal) input and
output sizes, where every output neuron has a receptive field
equals to the entire input. We opt for bi-directional recur-

3

Distance Matrix
(Prediction to Ground Truth)

2 × hidden units FC layers

First-stage hidden
representation

2 × hidden units

Second-stage hidden
representation

M

N

Seq-to-seq
Bi-RNN

Seq-to-seq
Bi-RNN

N

M

Row-wise
flatten Reshape

...

M × N
M × N

2 × hidden units

Column-wise
flatten

N

M

Sigmoid Reshape

N

M

Soft Assignment Matrix

D Ã

Figure 2. Structure of the proposed Deep Hungarian Network. The row-wise and column-wise flattening are inspired by the original
Hungarian algorithm, while the Bi-RNN allows for all decisions to be taken globally, thus is accounting for all input entries.

rent neural networks (Bi-RNNs). Alternatively, one could
consider the use of fully convolutional networks, as these
would be able to process variable input/output sizes. How-
ever, large assignment problems would lead to partial recep-
tive fields, and therefore, to local assignment decisions.

We outline our proposed architecture in Fig. 2. In order
to process a 2D distance matrix D using recurrent neural
networks, we perform row-wise (column-wise) flattening of
the distance matrix (hidden representation). This is inspired
by the original Hungarian algorithm that performs sequen-
tially row-wise and column-wise reductions and zero-entry
verifications. These representations are fed to Bi-RNNs
(see details below), opening the possibility for g(·) to make
global assignment decisions.

In more detail, we perform flattening sequentially, i.e.,
first row-wise followed by column-wise. The row-wise
flattened distance matrix D is input to a first Bi-RNN
that outputs the first-stage hidden representation of size
N×M×2h, where h is the size of the Bi-RNN hidden lay-
ers. Intuitively the first-stage hidden representations encode
the row-wise intermediate assignments. We then flatten the
first-stage hidden representation column-wise, to input to a
second (different) Bi-RNN that produces the second-stage
hidden representation of size N ×M × 2h. The two Bi-
RNNs have the same hidden size, but they do not share
weights. Intuitively, the second-stage hidden representation
encodes the final assignments. To translate these encodings
into the final assignments, we feed the second-stage hidden
representation through three fully-connected layers (along
the 2h dimension, i.e., independently for each element of
the original D). Finally, a sigmoid activation produces the
optimalN×M soft-assignment matrix Ã. Note that in con-
trast to the binary output of the Hungarian algorithm, DHN
outputs a (soft) assignment matrix Ã ∈ [0, 1]N×M .

Distance Matrix Computation. The most common metric
for measuring the similarity between two bounding boxes is
the Intersection-over-Union (IoU). Note that, in principle,
the input to D can be any (differentiable) distance function.
However, if two bounding boxes have no intersection, the
distance 1 − IoU will always be a constant value of 1. In
that case, the gradient from the loss would be 0, and no
information will be back-propagated. For this reason, our
distance is an average of the Euclidean center-point distance
and the Jaccard distance J (defined as 1− IoU):

dnm =
f(xn,ym) + J (xn,ym)

2
. (3)

f is the Euclidean distance normalized w.r.t. the image size:

f(xn,ym) =
‖c(xn)− c(ym)‖2√

H2 +W 2
, (4)

where function c(·) computes the center point of the bound-
ing box and H and W are the height and the width of the
video frame, respectively. Both the normalized Euclidean
distance and Jaccard distance have values in the range of
[0, 1], so do all entries dnm. Our framework admits any
distance that is expressed as a composition of differentiable
distance functions. In the experimental section, we demon-
strate the benefits of adding a term that measures the cosine
distance between two learned appearance embeddings.

In the next section, we explain how we compute a dif-
ferentiable proxy of MOTA and MOTP as a function of the
distance matrix D and the soft assignment matrix Ã.

4.2. Differentiable MOTA and MOTP

In this section, we detail the computation of two compo-
nents of the proposed DeepMOT loss: differentiable MOTA
(dMOTA) and MOTP (dMOTP). As discussed in Sec. 3,
to compute the classic MOTA and MOTP evaluation mea-
sures, we first find the optimal matching between predicted
tracks and ground-truth objects. Based on the optimal as-
signment matrix A∗, we count false negatives FN, false
positives FP and ID switches IDS. The latter are com-
puted by comparing assignments between two consecutive
frames. To compute the proposed dMOTA and dMOTP ,
we need to express all these as differentiable functions of
the distance matrix D and soft assignment matrix Ã com-
puted using DHN (see Sec. 4.1).

The operations described in the following are illustrated
in Fig. 3. First, we need to count false positives and false
negatives. Therefore, we need to obtain a count of non-
matched tracks and non-matched ground-truth objects. To
this end, we first construct a matrix Cr by appending a col-
umn to Ã, filled with a threshold value δ, and perform row-
wise softmax (Fig. 3a). Analogously, we construct Cc by
appending a row to Ã and perform column-wise softmax
(Fig. 3b). Then, we can express a soft approximation of the
number of false positives and false negatives as:

F̃P =
∑
n

Cr
n,M+1, F̃N =

∑
m

Cc
N+1,m . (5)

4

δ δ δ
0.1 0.1 0.9

0.2 0.8 0.2

0.3 0.3 0.2

0.00.9 0.0

Column-wise
Softmax

δ

δ

δ

Row-wise
Softmax

1 0 0

0 1 0

Apply mask

0.0

0.8

0.1

0.00.0

0.00.0

0.20.0 0.0

0.0

Deep
Hungarian

 Net

100

Xt1

Xt2

Xt3

0.5 0.3 0.2

0.7 0.1 0.6

∞

D

0.1 0.1 0.9

0.2 0.8 0.2

0.3 0.3 0.2

0.0 0.0 1.0

0.10.0 0.9 0.0

0.1 0.1 0.0

0.0 0.0 1.0

0.0 1.0 0.0

0.1 0.0 0.0

0.0 0.0 1.0

0.0 1.0 0.0

0.1 0.0 0.0

0.1 0.1 0.9

0.2 0.8 0.2

0.3 0.3 0.2

1

00

0

0 00

0

1

Create mask
 with TP

*

element-wise multiplication

yt2yt1 yt3

a)

b)

c)

∞ ∞

Ã

Xt1

Xt2

Xt3

yt2yt1 yt3

Xt1

Xt2

Xt3

Xt1

Xt2

Xt3

yt2yt1 yt3

yt2yt1 yt3

Xt1

Xt2

Xt3

Xt1

Xt2

Xt3

yt2yt1 yt3

yt2yt1 yt3

Xt1

Xt2

Xt3

yt2yt1 yt3

Xt-1,1

Xt-1,2

Xt-1,3

yt-1,1 yt-1,2 yt-1,3

Xt1

Xt2

Xt3

yt2yt1 yt3

dMOTP = || Bᵀᴾ ||0

Σ

 ̃FP = Σ

 ̃FN = Σ

 ̃IDS = Σ

Cᶜ

Cʳ

|| Bᵀᴾ ||0 = Σ

Figure 3. DeepMOT loss: dMOTP (top) is computed as the av-
erage distance of matched tracks and dMOTA (bottom) is com-
posed with F̃P, ˜IDS and F̃N.

Intuitively, if all elements in Ã are smaller than the thresh-
old δ (e.g., δ = 0.5), then entries of Cr

n,M+1 and Cc
N+1,m

will be close to 1, signaling we have a FN or FP. Otherwise,
the element with the largest value in each row/column of
Cr and Cc (respectively) will be close to 1, signaling we
have a match. Therefore, the sum of the N + 1-th row of
Cc (Fig. 3b) and of the M + 1-th column of Cr (Fig. 3a)
provide an soft estimate of the number of FNs and the num-
ber of FPs, respectively. We will refer to these as F̃Ns and
F̃Ps.

To compute the soft approximation of ID switches ˜IDS
and dMOTP , we additionally need to construct two bi-
nary matrices BTP and BTP

-1 , whose non-zero entries sig-
nal true positives at the current and previous frames re-
spectively. Row indices of these matrices correspond to
indices assigned to our tracks and column indices corre-
spond to ground truth object identities. We need to pad
BTP

-1 for element-wise multiplication because the number of
tracks and objects varies from frame-to-frame. We do this
by filling-in rows and columns of BTP

-1 to adapt the matrix
size for the newly-appeared objects at the current frame by
copying their corresponding rows and columns from BTP.
Note that we do not need to modify BTP to compensate for
newly appearing objects as these do not cause IDS. By such
construction, the sum of Cc

1:N,1:M �B
TP
-1 (where B is the

binary complement of B) yields the (approximated) num-
ber of IDS (Fig. 3c):

˜IDS = ‖Cc
1:N,1:M �B

TP
-1 ‖1, (6)

where ‖ ·‖1 is the L1 norm of a flattened matrix. With these

Deep
Hungarian Net

DeepMOT
Loss

Bounding
Boxes

RGB
Images

gradients

Deep
Multi-Object

Tracker
D A

Deep
Multi-Object

Tracker

HA+Smooth
L1 Loss

(ii) Proposed Full-MOT Back-prop; the gradient goes through DHN

(i) Assignment-less Back-prop Baseline

gradients

~

Figure 4. The proposed MOT training strategy (bottom) accounts
for the track-to-object assignment problem, that is solved by the
proposed deep Hungarian network, and approximates the standard
MOT losses, as opposed to the classical training strategies (top)
using the non-differentiable Hungarian algorithm.

ingredients, we can evaluate dMOTA:

dMOTA = 1− F̃P + F̃N +γ ˜IDS
M

. (7)

The parameter γ controls the penalty we assign to IDS.
Similarly, we can express dMOTP as:

dMOTP = 1− ‖D�BTP ‖1
‖BTP ‖0

. (8)

Intuitively, the L1 norm expresses the similarity between
the matched tracks and ground-truth objects, and the zero-
norm ‖ · ‖0 counts the number of matches. Since we should
train the tracker to maximize MOTA and MOTP, we pro-
pose the following DeepMOT loss:

LDeepMOT = (1− dMOTA) + λ(1− dMOTP), (9)

where λ is a loss balancing factor. By minimizing our pro-
posed loss function LDeepMOT, we are penalizing false pos-
itives, false negatives and ID switches – all used by the
CLEAR-MOT measures [5]. As it is the case for the stan-
dard CLEAR-MOT measure, dMOTA, dMOTP and thus
LDeepMOT must be computed at every time frame t.

4.3. How To Train Your Deep Multi-Object Tracker

The overall tracker training procedure is shown in Fig. 4,
and goes as follows. We randomly sample a pair of con-
secutive frames from the training video sequences. These
two images together with their ground-truth bounding boxes
constitute one training instance. For each such instance, we
first initialize the tracks with ground-truth bounding boxes
(at time t) and run the forward pass to obtain the track
bounding-box predictions in the following video frame
(time t + 1). To mimic the effect of imperfect detections,
we add random perturbations to the ground-truth bounding
boxes (see supplementary material for details). We then
compute the distance matrix between track bounding-box

5

predictions and ground-truth bounding boxes and use our
proposed DHN to compute soft assignments (Sec. 4.1). Fi-
nally, we compute our proxy loss based on our distance ma-
trix and predicted assignments between tracks and ground-
truth (Sec. 4.2). This provides us with a gradient that ac-
counts for the assignment, and that is used to update the
weights of the tracker.

5. Experimental Evaluation

In this section, we first experimentally verify that our
proposed DHN matching network is a good approximation
to the Hungarian algorithm [25] for bi-partite matching, as
required by MOT evaluation measures (Sec. 5.1). To show
the merit of the proposed framework in practice, we conduct
several tracking experiments on several datasets for evalu-
ating pedestrian tracking performance (Sec. 5.2).

5.1. Deep Hungarian Net

In this section, we provide insights into the performance
of our differentiable matching module and outline the train-
ing and evaluation details.

DHN Training. To train the DHN, we create a data set
with pairs of matrices (D and A∗), separated into 114,483
matrices for training and 17,880 for matrices testing. We
generate distance matrices D using ground-truth bounding
boxes and public detections, provided by the MOT chal-
lenge datasets [34, 27]. We generate the corresponding as-
signment matrices A∗ (as labels for training) using the Hun-
garian algorithm. We pose the DHN training as a binary
classification task using the focal loss [30]. We compensate
for the class imbalance (between the number of zeros n0
and ones n1 in A∗) by weighting the dominant zero-class
using w0 = n1/(n0 + n1). We weight the one-class by
w1 = 1 − w0. We evaluate the performance of DHN by
computing the weighted accuracy (WA):

WA =
w1n

∗
1 + w0n

∗
0

w1n1 + w0n0
, (10)

where n∗1 and n∗0 are the number of true and false positives,
respectively. Since the output of the DHN are between 0
and 1, we threshold the output at 0.5. Under these condi-
tions, the network in Fig. 2 scores a WA of 92.88%. In the
supplementary material, we provide (i) an ablation study on
the choice of recurrent unit, (ii) a discussion of alternative
architectures, (iii) an analysis of the impact of the distance
matrix size on the matching precision and (iv) we experi-
mentally assess how well the DHN preserves the properties
of assignment matrices.

DHN Usage. Once the DHN is trained with the strategy
described above, its weights are fixed: they are not updated
in any way during the training of the deep trackers.

5.2. Experimental Settings

We demonstrate the practical interest of the proposed
framework by assessing the performance of existing (deep)
multi-object trackers when trained using the proposed
framework on several datasets for pedestrian tracking. We
first ablate the loss terms and the tracking architectures. We
also evaluate the impact of the framework with respect to
other training alternatives. Finally, we establish a new state-
of-the-art score on the MOTChallenge benchmark.

Datasets and Evaluation Metrics. We use the MOT15,
MOT16, and MOT17 datasets, which provide crowded
pedestrian video sequences captured in the real-world out-
door and indoor scenarios. For the ablation study, we divide
the training sequences into training and validation. The de-
tails of the split can be found in the supplementary material.
In addition to the standard MOTP and MOTA measures [5],
we report the performance using the IDF1 [41] measure, de-
fined as the ratio of correctly identified detections over the
average number of ground-truth objects and object tracks.
We also report mostly tracked (MT) and mostly lost (ML)
targets, defined as the ratio of ground-truth trajectories that
are covered by a track hypothesis more than 80% and less
than 20% of their life span respectively.

Tracktor. Tracktor [3] is an adaptation of the Faster
RCNN [40] object detector to the MOT task. It uses a region
proposal network (RPN) and the classification/regression
heads of the detector to (i) detect objects and (ii) to fol-
low the detected targets in the consecutive frames using a
bounding box regression head. As most parts of Tracktor
are trainable, this makes this method a perfect candidate
to demonstrate the benefits of our framework. Note that
Tracktor was originally trained only on the MOTChallenge
detection dataset and was only applied to video sequences
during inference. In the following, we will refer to Track-
tor trained in this setting as Vanilla Base Tracktor. Thanks
to DeepMOT, we can train Tracktor directly on video se-
quences, optimizing for standard MOT measures. We will
refer to this variant as DeepMOT Base Tracktor.

Tracktor+ReID. Vanilla Tracktor has no notion of track
identity. Therefore [3] proposed to use an externally trained
ReID module during inference to reduce the risk of IDS.
This external ReID module is a feature extractor network
with a ResNet-50 backbone, trained using a triplet loss [44]
on the MOTChallenge video sequences. We will refer to
this variant as +ReIDext. Note that this does not give
Tracktor any notion of identity during training. This means
that the DeepMOT loss which penalises the number of IDS
will have no significant effect on the final performance. For
this reason, we propose to replace the external ReID module
with a lightweight ReID head that we can train end-to-end
together with Tracktor using DeepMOT. This in turn allows
us to utilize the loss term that penalises IDS and to fully

6

Method MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓

V
an

. Base 59.97 89.50 70.84 35.13 27.66 276 31827 326
+ReIDext 60.20 89.50 71.15 35.13 27.80 276 31827 152

D
ee

pM
O

T Base 60.43 91.82 71.44 35.41 27.25 218 31545 309
+ReIDext 60.62 91.82 71.66 35.41 27.39 218 31545 149
+ReIDhead 60.66 91.82 72.32 35.41 27.25 218 31545 118

Table 1. Impact of the different ReID strategies for the two training
strategies on Tracktor’s performance.

optimize performance to all components of CLEAR-MOT
measures. We refer to this variant as +ReIDhead. It takes
the form of a fully-connected layer with 128 units plugged
into Tracktor. In the supplementary material we provide de-
tails on how we embed the ID information into the distance
matrix D.

Even if such a network head has been previously used
in [51], it was trained externally using the triplet loss [44].
To the best of our knowledge, we are the first to optimize
such an appearance model by directly optimizing the whole
network for tracking evaluation measures.

MOT-by-SOT. To demonstrate the generality of our
method, we propose two additional simple trainable base-
lines to perform MOT by leveraging two existing off-
the-shelf (trainable) single-object trackers (SOT): GO-
TURN [18] and SiamRPN [29]. During inference we ini-
tialize and terminate tracks based on object detections. For
each object, the SOTs take a reference image at time t−1 of
the person and a search region in image t as input. Based on
this reference box and search region, the SOTs then regress
a bounding box for each object independently.

Track Management. In all cases, we use a simple (non-
trainable) track management procedure. We (i) use detector
responses to initialize object tracks in regions, not covered
by existing tracks (can be either public detections or Faster
RCNN detection responses in the case of Tracktor); (ii) we
regress tracks from frame t to frame t+ 1 using either SOT
or Tracktor regression head and (iii) we terminate tracks that
have no overlap with detections (SOT baseline) or invoke
the classification head of Tracktor, that signals whether a
track is covering an object or not. As an alternative to direct
termination, we can set a track as invisible for K frames.

5.3. Results and Discussion

Beyond Bounding Box Regression. In Tab. 1, we first
establish the Vanilla Base Tracktor performance on our val-
idation set and compare it to the DeepMOT Base Track-
tor. This experiment (i) validates that our proposed training
pipeline based on DHN delivers the gradient to the networks
and improves the overall performance, and (ii) confirms our
intuition that training object trackers using a loss that di-
rectly correlates with the tracking evaluation measures has
a positive impact. Note that the impact on IDS is minimal,
which may be on the first sight surprising, as our proposed
loss penalises IDS in addition to FPs, FNs, and bounding

Training loss MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓

Vanilla 60.20 89.50 71.15 35.13 27.80 276 31827 152
Smooth L1 60.38 91.81 71.27 34.99 27.25 294 31649 164

dMOTP 60.51 91.74 71.75 35.41 26.83 291 31574 142
dMOTA 60.52 88.31 71.92 35.41 27.39 254 31597 142
dMOTP+FN+FP 60.61 92.03 72.10 35.41 27.25 222 31579 124
dMOTA+dMOTP 60.66 91.82 72.32 35.41 27.25 218 31545 118

Table 2. Ablation study on the effect the training loss on Tracktor.

box misalignment.
We study this by first evaluating the impact of applying

external ReID module, i.e., +ReIDext. As can be seen in
Tab. 1, this external ReID module has a positive impact on
the performance in terms of MOTA (+0.23% and +0.19%)
and IDS (−174 and −160) compared to Base for Vanilla
and DeepMOT training respectively. As expected, applying
an external ReID module during inference further improves
the results, especially in terms of IDS.

To further demonstrate the interest of a ReID module, we
also report the +ReIDhead architecture trained with Deep-
MOT. Importantly, +ReIDhead cannot be trained in the
Vanilla setting due to the lack of mechanisms to penalise
IDS. Remarkably, the addition of a lightweight ReIDhead
trained end-to-end with Tracktor does not only improve
over the Base performance (MOTA +0.23%, IDS ↓ 191),
but it also outperforms the external ReID variant (MOTA
↑ 0.04 and IDS ↓ 31). Very importantly, the lightweight
ReID head contains a significantly lower number of param-
eters (≈ 131 K) compared to the external ReID module
(≈ 25 M).

Finally, in addition to improve the performance measures
for which we optimise Tracktor, DeepMOT consistently im-
proves on tracking measures such as IDF1 (↑1.17 improve-
ment of DeepMOT+ReIDhead over Vanilla+ReIDext).
We conclude that (i) training existing trackers using our pro-
posed loss clearly improves the performance and (ii) we can
easily extend existing trackers such as Tracktor to go be-
yond simple bounding box regression and incorporate the
appearance module directly into the network. All modules
are optimized jointly in a single training.

DeepMOT Loss Ablation. Next, we perform several ex-
periments in which we study the impact of different com-
ponents of our proposed loss (Eq. 9) to the performance
of Tracktor (DeepMOT+ReIDhead). We outline our results
in Tab. 2. In addition to Base+ReIDext (best performing
trained in Vanilla settings), we also report results obtained
by training the same architecture using only smooth L1 loss
(see Fig. 4). We train the regression head with Smooth L1

loss using a similar training procedure as for DeepMOT (see
Sec. 4.3), to regress predicted bounding boxes to the ones at
current time step of their associated tracks. This approach
is limited in the sense that we cannot penalise FPs, FNs and
IDS. These strategies are compared to four DeepMOT loss
variants, see Tab. 2.

The Smooth L1 training, when compared to Vanilla, has

7

Training MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓

G
O

T
U

R
N Pre-trained 45.99 85.87 49.83 22.27 36.51 2927 39271 1577

Smooth L1 52.28 90.56 63.53 29.46 34.58 2026 36180 472
DeepMOT 54.09 90.95 66.09 28.63 35.13 927 36019 261

Si
am

R
PN Pre-trained 55.35 87.15 66.95 33.61 31.81 1907 33925 356

Smooth L1 56.51 90.88 68.38 33.75 32.64 925 34151 167
DeepMOT 57.16 89.32 69.49 33.47 32.78 889 33667 161

Tr
ac

kt
or Vanilla 60.20 89.50 71.15 35.13 27.80 276 31827 152

Smooth L1 60.38 91.81 71.27 34.99 27.25 294 31649 164
DeepMOT 60.66 91.82 72.32 35.41 27.25 218 31545 118

Table 3. Ablation study and comparison with MOT-by-SOT.

a positive impact on all performance measures, except for
MT, FP, and IDS. However, both Vanilla and Smooth L1

are outperformed almost systematically for all performance
measures by the various variants of the DeepMOT loss. Re-
markably, when using dMOTA term in our loss, we sig-
nificantly reduce the number of IDS and FP. Training with
dMOTP has the highest impact on MOTP, as it is the case
when training with Smooth L1. When only optimizing for
dMOTA, we have a higher impact on the MOTA and IDF1
measure but only a marginal effect on MOTP. Remarkably,
when training with (dMOTA+dMOTP), we obtain a con-
sistent improvement on all tracking evaluation measures
with respect to Vanilla and SmoothL1. Finally, we asses the
impact of the ID penalty in dMOTA by setting the weight
λ to 0 (Eq. 9) (line dMOTP+FN+FP). In this settings, the
trackers exhibits a higher number of IDS compared to using
the full loss. This confirms that using the full loss is the best
strategy.

MOT-by-SOT Ablation. Using DeepMOT, we can turn
trainable SOT methods into trainable MOT methods by
combining them with the track management mechanism
(as explained in Sec. 5.2) and optimize their parameters
using our loss. In Tab. 3, we outline the results of the
two MOT-by-SOT baselines (using GOTURN [18] and
SiamRPN [29]). For both, we show the performance when
using (i) a pre-trained network, (ii) a network fine-tuned us-
ing the smooth L1 loss, and finally, (iii) the network trained
with DeepMOT.

Based on the results outlined in Tab. 3, we conclude
that training using the Smooth L1 loss improves the
MOTA for both SOTs (GOTURN: +6.29%, SiamRPN:
+1.16%). Compared to models trained with Smooth L1

loss, we further improve MOTA and reduce the number of
IDS when we train them using DeepMOT. For GOTURN
(SiamRPN), we record a MOTA improvement of 1.81%
(0.65%) while reducing the number of IDS by 211 (6). We
also outline the improvements over Base+ReIDext Track-
tor trained on video sequences using a smooth L1 loss,
and Base+ReIDhead Tracktor trained using our framework.
These results further validate the merit and generality of our
method for training deep multi-object trackers.

MOTChallenge Benchmark Evaluation We evaluate the
trackers trained using our framework on the MOTChallenge

Method MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓

M
O

T
17

DeepMOT-Tracktor 53.7 77.2 53.8 19.4 36.6 11731 247447 1947
Tracktor [3] 53.5 78.0 52.3 19.5 36.6 12201 248047 2072

DeepMOT-SiamRPN 52.1 78.1 47.7 16.7 41.7 12132 255743 2271
SiamRPN [29] 47.8 76.4 41.4 17.0 41.7 38279 251989 4325

DeepMOT-GOTURN 48.1 77.9 40.0 13.6 43.5 22497 266515 3792
GOTURN [18] 38.3 75.1 25.7 9.4 47.1 55381 282670 10328

eHAF [46] 51.8 77.0 54.7 23.4 37.9 33212 236772 1834
FWT [19] 51.3 77.0 47.6 21.4 35.2 24101 247921 2648
jCC [21] 51.2 75.9 54.5 20.9 37.0 25937 247822 1802
MOTDT17 [31] 50.9 76.6 52.7 17.5 35.7 24069 250768 2474
MHT DAM [22] 50.7 77.5 47.2 20.8 36.9 22875 252889 2314

M
O

T
16

DeepMOT-Tracktor 54.8 77.5 53.4 19.1 37.0 2955 78765 645
Tracktor [3] 54.4 78.2 52.5 19.0 36.9 3280 79149 682

DeepMOT-SiamRPN 51.8 78.1 45.5 16.1 45.1 3576 83699 641
SiamRPN [29] 44.0 76.6 36.6 15.5 45.7 18784 82318 1047

DeepMOT-GOTURN 47.2 78.0 37.2 13.7 46.1 7230 87781 1206
GOTURN [18] 37.5 75.4 25.1 8.4 46.5 17746 92867 3277

HCC [33] 49.3 79.0 50.7 17.8 39.9 5333 86795 391
LMP [48] 48.8 79.0 51.3 18.2 40.1 6654 86245 481
GCRA [32] 48.2 77.5 48.6 12.9 41.1 5104 88586 821
FWT [19] 47.8 75.5 44.3 19.1 38.2 8886 85487 852
MOTDT [31] 47.6 74.8 50.9 15.2 38.3 9253 85431 792

Table 4. We establish a new state-of-the-art on MOT16 and
MOT17 public benchmarks by using the proposed DeepMOT.

benchmark using the best-performing configuration, deter-
mined using the validation set. During training and infer-
ence, we use the camera motion compensation module, as
proposed by [3], for the three trained methods. We discuss
the results obtained on MOT16-17 and provide a discussion
of MOT15 results and parameters in the supplementary.

We follow the standard practice and compare our models
to methods that are officially published on the MOTChal-
lenge benchmark and peer-reviewed. For MOT16 and
MOT17, we average the results obtained using the three
sets of provided public detections (DPM [16], SDP [14] and
Faster R-CNN [40]). As in [3], we use these public detec-
tions for track initialization and termination. Importantly,
in the case of Tracktor, we do not use the internal detection
mechanism of the network, but only public detections.

As can be seen in Tab. 4, DeepMOT-Tracktor establishes
a new state-of-the-art on both MOT17 and MOT16. We im-
prove over Tracktor (on MOT17 and MOT16, respectively)
in terms of (i) MOTA (0.2% and 0.4%), (ii) IDF1 (1.5%
and 0.9%) and (iii) IDS (125 and 37). On both benchmarks,
Vanilla Tracktor is the second best-performing method, and
our simple SOT-by-MOT baseline DeepMOT-SiamRPN is
the third. We observe large improvements over our MOT-
by-SOT pre-trained models and models trained using our
framework. As can be seen, we improve both GOTURN and
SiamRPN by a large margin. For the former we improve
MOTA by 9.8% and 9.7% and we significantly reduce the
number of IDS by 6536 and 2071, for MOT17 and MOT16
respectively. The impact of our training on the SiamRPN
MOT-by-SOT baseline follows similar trends.

6. Conclusion

In this paper, we propose an end-to-end MOT training
framework, based on a differentiable approximation of the

8

Hungarian algorithm and CLEAR-MOT metrics. We exper-
imentally demonstrate that our proposed MOT framework
improves the performance of existing deep MOT methods.
Thanks to our method, we set a new state-of-the-art score
on the MOT16 and MOT17 datasets.

We believe that our method was the missing block for
advancing the progress in the area of end-to-end learning
for deep multi-object tracking. We expect that our training
module holds the potential to become a building block for
training future multi-object trackers.

Acknowledgements

We gratefully acknowledge the mobility grants from the
Department for Science and Technology of the French Em-
bassy in Berlin (SST) and the French Institute for Research
in Computer Science and Automation (Inria). We are grate-
ful to the Dynamic Vision and Learning Group, TUM De-
partment of Informatics, Technical University of Munich as
the host institute, especially Guillem Brasó and Tim Mein-
hardt for their help in this work. Finally, this research was
partially funded by the Humboldt Foundation through the
Sofja Kovalevskaja Award.

References
[1] Sileye Ba, Xavier Alameda-Pineda, Alessio Xompero, and

Radu Horaud. An on-line variational bayesian model for
multi-person tracking from cluttered scenes. CVIU, 153:64–
76, 2016. 2

[2] Yutong Ban, Sileye Ba, Xavier Alameda-Pineda, and Radu
Horaud. Tracking multiple persons based on a variational
bayesian model. In ECCV, 2016. 2

[3] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixé.
Tracking without bells and whistles. In ICCV, 2019. 1, 2, 6,
8, 11, 14

[4] James Bergstra, Daniel Yamins, and David D. Cox. Making
a science of model search: Hyperparameter optimization in
hundreds of dimensions for vision architectures. In ICML,
2013. 2

[5] Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple
object tracking performance: The clear mot metrics. JIVP,
2008:1:1–1:10, 2008. 1, 2, 3, 5, 6, 11, 13

[6] William Brendel, Mohamed R. Amer, and Sinisa Todorovic.
Multi object tracking as maximum weight independent set.
CVPR, 2011. 1, 2

[7] Asad A. Butt and Robert T. Collins. Multi-target tracking by
lagrangian relaxation to min-cost network flow. In CVPR,
June 2013. 1, 2

[8] Long Chen, Haizhou Ai, Chong Shang, Zijie Zhuang, and Bo
Bai. Online multi-object tracking with convolutional neural
networks. In ICIP, 2017. 14

[9] Hyunggi Cho, Young-Woo Seo, BVK Vijaya Kumar, and Ra-
gunathan Raj Rajkumar. A multi-sensor fusion system for
moving object detection and tracking in urban driving envi-
ronments. In ICRA, 2014. 2

[10] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014. 12

[11] Wongun Choi. Near-online multi-target tracking with aggre-
gated local flow descriptor. In ICCV, 2015. 2

[12] Qi Chu, Wanli Ouyang, Hongsheng Li, Xiaogang Wang, Bin
Liu, and Nenghai Yu. Online multi-object tracking using
cnn-based single object tracker with spatial-temporal atten-
tion mechanism. ICCV, 2017. 1, 2

[13] Navneet Dalal and Bill Triggs. Histograms of oriented gra-
dients for human detection. In CVPR, 2005. 2

[14] Piotr Dollár, Ron Appel, Serge Belongie, and Pietro Per-
ona. Fast feature pyramids for object detection. PAMI,
36(8):1532–1545, 2014. 8

[15] Kuan Fang, Yu Xiang, Xiaocheng Li, and Silvio Savarese.
Recurrent autoregressive networks for online multi-object
tracking. In WACV, 2018. 14

[16] Pedro Felzenszwalb, David McAllester, and Deva Ra-
manan. A discriminatively trained, multiscale, deformable
part model. In CVPR, 2008. 2, 8, 11

[17] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimension-
ality reduction by learning an invariant mapping. In CVPR,
2006. 2

[18] David Held, Sebastian Thrun, and Silvio Savarese. Learning
to track at 100 fps with deep regression networks. In ECCV,
2016. 7, 8, 14

[19] Roberto Henschel, Laura Leal-Taixe, Daniel Cremers, and
Bodo Rosenhahn. Improvements to frank-wolfe optimiza-
tion for multi-detector multi-object tracking. arXiv preprint
arXiv:1705.08314, 2017. 8

[20] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997. 12

[21] Margret Keuper, Siyu Tang, Bjorn Andres, Thomas Brox,
and Bernt Schiele. Motion segmentation & multiple object
tracking by correlation co-clustering. PAMI, 2018. 8, 14

[22] Chanho Kim, Fuxin Li, Arridhana Ciptadi, and James M.
Rehg. Multiple hypothesis tracking revisited. In ICCV, 2015.
2, 8

[23] Chanho Kim, Fuxin Li, and James M. Rehg. Multi-object
tracking with neural gating using bilinear lstm. In ECCV,
2018. 2

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. 2015. 11

[25] Harold William Kuhn and Bryn Yaw. The hungarian method
for the assignment problem. Naval research logistics quar-
terly, pages 83–97, 1955. 1, 2, 3, 6

[26] Laura Leal-Taixé, Cristian Canton-Ferrer, and Konrad
Schindler. Learning by tracking: Siamese cnn for robust tar-
get association. CVPR Workshops, 2016. 1, 2

[27] Laura Leal-Taixé, Anton Milan, Ian Reid, Stefan Roth,
and Konrad Schindler. MOTChallenge 2015: Towards
a benchmark for multi-target tracking. arXiv preprint
arXiv:1504.01942, 2015. 2, 6, 11

[28] Bastian Leibe, Konrad Schindler, Nico Cornelis, and
Luc Van Gool. Coupled object detection and tracking from

9

static cameras and moving vehicles. PAMI, 30(10):1683–
1698, 2008. 2

[29] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.
High performance visual tracking with siamese region pro-
posal network. In CVPR, 2018. 7, 8, 14

[30] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollar. Focal loss for dense object detection. In ICCV,
2017. 6

[31] Chen Long, Ai Haizhou, Zhuang Zijie, and Shang Chong.
Real-time multiple people tracking with deeply learned can-
didate selection and person re-identification. In ICME, 2018.
8

[32] Cong Ma, Changshui Yang, Fan Yang, Yueqing Zhuang, Zi-
wei Zhang, Huizhu Jia, and Xiaodong Xie. Trajectory fac-
tory: Tracklet cleaving and re-connection by deep siamese
bi-gru for multiple object tracking. In ICME, 2018. 8

[33] Liqian Ma, Siyu Tang, Michael J. Black, and Luc Van Gool.
Customized multi-person tracker. In ACCV, 2018. 8

[34] Anton Milan, Laura. Leal-Taixé, Ian Reid, Stefan Roth, and
Konrad Schindler. MOT16: A benchmark for multi-object
tracking. arXiv preprint arXiv:1603.00831, 2016. 2, 6, 11

[35] Anton Milan, Stefan Roth, and Konrad Schindler. Contin-
uous energy minimization for multitarget tracking. PAMI,
36(1):58–72, 2014. 2

[36] Songhwai Oh, Stuart Russell, and Shankar Sastry. Markov
chain monte carlo data association for multi-target tracking.
IEEE Trans. Automatic Control, 54(3):481–497, 2009. 2

[37] Aljoša Ošep, Wolfgang Mehner, Markus Mathias, and Bas-
tian Leibe. Combined image- and world-space tracking in
traffic scenes. In ICRA, 2017. 2

[38] Hamed Pirsiavash, Deva Ramanan, and Charles C.Fowlkes.
Globally-optimal greedy algorithms for tracking a variable
number of objects. In CVPR, 2011. 1, 2

[39] Donald B. Reid. An algorithm for tracking multiple targets.
IEEE Trans. Automatic Control, 24(6):843–854, 1979. 1, 2

[40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with re-
gion proposal networks. In NIPS, 2015. 6, 8, 11

[41] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara,
and Carlo Tomasi. Performance measures and a data set for
multi-target, multi-camera tracking. In ECCV, 2016. 3, 6

[42] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 12

[43] Amir Sadeghian, Alexandre Alahi, and Silvio Savarese.
Tracking the untrackable: Learning to track multiple cues
with long-term dependencies. In ICCV, 2017. 14

[44] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In CVPR, 2015. 1, 2, 6, 7

[45] Samuel Schulter, Paul Vernaza, Wongun Choi, and Manmo-
han Krishna Chandraker. Deep network flow for multi-object
tracking. In CVPR, 2017. 1, 2

[46] Hao Sheng, Yang Zhang, Jiahui Chen, Zhang Xiong, and Jun
Zhang. Heterogeneous association graph fusion for target

association in multiple object tracking. IEEE Transactions
on Circuits and Systems for Video Technology, 2018. 8

[47] Jeany Son, Mooyeol Baek, Minsu Cho, and Bohyung Han.
Multi-object tracking with quadruplet convolutional neural
networks. In CVPR, 2017. 1, 2

[48] Siyu Tang, Mykhaylo Andriluka, Bjoern Andres, and Bernt
Schiele. Multiple people tracking by lifted multicut and per-
son re-identification. In CVPR, 2017. 8

[49] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-
margin markov networks. In Advances in neural information
processing systems, 2003. 2

[50] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent mag-
nitude. COURSERA: Neural networks for machine learning,
2012. 11

[51] Paul Voigtlaender, Michael Krause, Aljosa Osep, Jonathon
Luiten, B.B.G Sekar, Andreas Geiger, and Bastian Leibe.
MOTS: Multi-object tracking and segmentation. In CVPR,
2019. 1, 2, 7

[52] Shaofei Wang and Charless C. Fowlkes. Learning optimal
parameters for multi-target tracking with contextual interac-
tions. IJCV, 122(3):484–501, 2016. 2

[53] Yu Xiang, Wongun Choi, Yuanqing Lin, and Silvio Savarese.
Data-driven 3d voxel patterns for object category recogni-
tion. In CVPR, 2015. 2

[54] Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsuper-
vised learning of deep representations and image clusters. In
CVPR, 2016. 11

[55] Li Zhang, Li Yuan, and Ramakant Nevatia. Global data as-
sociation for multi-object tracking using network flows. In
CVPR, 2008. 1, 2

[56] Ji Zhu, Hua Yang, Nian Liu, Minyoung Kim, Wenjun Zhang,
and Ming-Hsuan Yang. Online multi-object tracking with
dual matching attention networks. In ECCV, 2018. 1, 2

10

Supplementary Material
A. Implementation Details
A.1. DHN

For training the DHN, we use the RMSprop opti-
mizer [50] using a learning rate of 0.0003, gradually de-
creasing by 5% every 20,000 iterations. We train DHN for
20 epochs (6 hours on a Titan XP GPU). For the focal loss,
we weight zero-class by w0 = n1/(n0 + n1) and one-class
by w1 = 1−w0. Here n0 is the number of zeros and n1 the
number of ones in A∗. We also use a modulating factor of
2 in the focal loss. Once the DHN training converges, we
freeze the DHN weights and keep them fixed when training
trackers.

Datasets. To train the DHN, we generate training pairs as
follows. We first compute distance matrices using ground-
truth labels and object detections provided by the MOT
challenge datasets (MOT 15-17) [27, 34]. We augment the
data by setting all entries, higher than the randomly selected
threshold, to a large value to discourage these assignments.
This way, we obtain a rich set of various distance matrices.
We then compute assignments using the Hungarian algo-
rithm (variant used in [5]) to get the corresponding (binary)
assignment matrices A∗, used a supervisory signal. This
way we obtain a dataset of matrix pairs (D and A∗), sepa-
rated into 114,483 training and 17,880 testing instances.

A.2. Trackers

Datasets. For training object trackers, we use the MOT17
dataset. For the ablation studies, we divide the MOT17 into
train/val sets. We split each sequence into three parts, first,
one containing 50% of frames, the second one 25%, and
third 25%. We use the first 50% for training data and the
last 25% for validation to make sure there is no overlap be-
tween the two. In total, we use 2,664 frames for the train set,
containing 35,836 ground-truth bounding boxes and 306
identities. For the validation split, we have 1,328 frames
with 200 identities and public object detections (obtained
by DPM [16], SDP [54] and Faster RCNN [40] detectors).

Training. We use Adam optimizer [24] with a learning
rate of 0.0001. We train the SOTs for 15 epochs (72h), and
we train Tracktor (regression head and ReID head) for 18
epochs (12h) on a Titan XP GPU.

Loss Hyperparameters. When training trackers using our
loss, we set the base value of δ = 0.5, and the loss balancing
factors of λ = 5, γ = 2, as determined on the validation set.

Training Details. To train object trackers, we randomly
select one training instance from the sequence that corre-
sponds to a pair of consecutive frames. Then, we initial-
ize object trackers using ground-truth detections and predict

track continuations in the next frame. We use track predic-
tions and ground-truth bounding boxes to compute the dis-
tance matrix we pass to our DHN and, finally, compute loss
and back-propagate the gradients.

Data Augmentation. We initialize trackers using ground-
truth bounding boxes. To mimic the effects of imperfect
object detector and prevent over-fitting, we perform the fol-
lowing data augmentations during the training:

• We randomly re-scale the bounding boxes with a scal-
ing factor ranging from 0.8 to 1.2.

• We add random vertical and horizontal offset vectors
(bounding box width and height scaled by a random
factor ranging from 0− 0.25).

Training with the ReID Head. While training Tracktor
with our ReID head, we make the following changes. In-
stead of selecting a pair of video frames, we randomly select
ten consecutive frames. This is motivated by the implemen-
tation of external ReID mechanism in [3], where tracker av-
erages appearance features over ten most recent frames. At
each training step, we compute representative embedding
by averaging embeddings of the past video frames and use
it to compute the distance to the ground-truth object embed-
dings.

Test-time Track Managment. For the MOT-by-SOT base-
line, we use detections from three different detectors (DPM,
SDP, and FRCNN) to refine the track predictions. When
the IoU between a track prediction and detection is higher
than 0.6, we output their average. For the birth and death
processes, we initialize a new track only when detections
appear in 3 consecutive frames, and they have with minimal
consecutive IoU overlap of 0.3. Tracks that can not be veri-
fied by the detector are marked invisible and are terminated
after K = 60 frames. For Tracktor, we use precisely the
same track management and suppression strategy as pro-
posed in [3].

B. Additional DHN Ablation
We perform DHN ablation using our test split of 17,880

DHN training instances, as explained in Sec. A.1. In ad-
dition, we evaluate the generalization of DHN by evaluat-
ing performing evaluation using distance matrices, gener-
ated during the DeepMOT training process.

Accuracy. We compute the weighted accuracy as (using
the same weighting factors w1 and w0 as for the loss):

WA =
w1n

∗
1 + w0n

∗
0

w1n1 + w0n0
. (11)

Here, n∗1 and n∗0 are the number of true and false positives,
respectively.

Validity. The output of the matching algorithm should be
a permutation matrix; i.e., there should be only one assign-
ment per row/column. In the case of the Hungarian algo-
rithm, this is explicitly enforced via constraints on the solu-
tion. To study how well the predicted (discretized) assign-
ment matrices preserve this property, we count the number
of rows and columns by the following criteria:

• Several Assignments (SA) counts the number of
rows/columns that have more than one assignment
(when performing column-wise maximum and row-
wise maximum, respectively).

• Missing Assignments (MA) counts the number of
rows/columns that are not assigned (when performing
column-wise maximum and row-wise maximum, re-
spectively) when ground-truth assignment matrix A∗

has an assignment or inversely, no assignment in
A∗ while Ā has an assignment in the corresponding
rows/columns.

Discretization. To perform the evaluation, we first need to
discretize the soft assignment matrix Ã, predicted by our
DHN network to obtain a discrete assignment matrix Ā.
There are two possibilities.

(i) For each row of Ā, we set the entry of Ā correspond-
ing to the largest value of the row to 1 (as long as it
exceeds 0.5) and the remaining values are set to 0. We
refer to this variant as row-wise maximum.

(ii) Analogously, we can perform column-wise maximum
by processing columns instead of rows.

DHN variants. We compare three different DHN architec-
tures:

(i) Sequential DHN (seq, see Fig. 5),

(ii) Parallel DHN (paral, see Fig. 6),

(iii) 1D Convolutional DHN (1d conv, see Fig. 7).

The recurrent unit of the two recurrent architectures, seq
and paral, is also ablated between long-short term memory
units (lstm) [20] and gated recurrent units (gru) [10].

From Tab. 5, we see that the proposed sequential DHN
(seq gru) obtains the highest WA (92.88% for row-wise
maximum and 93.49% for column-wise maximum) com-
pared to others. Compared to the 1D convolutional DHN
variant (WA of 56.43% and 56.18% for row-wise and
column-wise maximum, respectively), Bi-RNN shows the
advantage of its global view due to the receptive field, equal
to the entire input. For the sequential DHN setting, we
observe in Tab. 5 that gru units consistently outperform
lstm units with WA +9.22% (row-wise maximum) and

Distance Matrix
(Track to Ground Truth)

M

N

Seq-to-seq
Bi-RNN

N

M
2 × hidden units

Row-wise
flatten Reshape

M × N

...

M × N

2 × hidden units

Column-wise
flatten

First-stage hidden
representation

N

M

Seq-to-seq
Bi-RNN

FC layers

Sigmoid

Soft Assignment Matrix

Reshape

N

M
2 × hidden units

Second-stage hidden
representation

Reshape

D

Ã

Figure 5. Sequential DHN: Structure of the proposed Deep Hun-
garian Network. The row-wise and column-wise flattening are in-
spired by the original Hungarian algorithm, while the Bi-RNN al-
lows for all decisions to be taken globally, thus is accounting for
all input entries.

Distance Matrix
(Track to Ground Truth)

M

N

N

M

Soft Assignment Matrix

Seq-to-seq
Bi-RNN

Seq-to-seq
Bi-RNN

...

M × N

...

N × M

Row-wise
flatten

Colum-wise
flatten

FC layers

Sigmoid

Reshape
ÃD

Figure 6. Parallel DHN variant: (i) We perform row-wise and the
column-wise flattening of D. (ii) We process the flattened vectors
using two different Bi-RNN networks. (iii) They then are respec-
tively passed to an FC layer for reducing the number of channels
and are concatenated in the channel dimension. (iv) After two FC
layers we reshape the vector and apply the sigmoid activation.

Distance Matrix
(Track to Ground Truth)

M

N

Row-wise
flatten

...

M × N

Conv1D(1,24,15)

M × N

24

1/2×M × N

48

Conv1D(24,48,15)

48
1/4×M

× N

Pooling 1/2
1/2×M × N

48

Upsampling × 2

1/2×M × N
48

Conv1D
(96,48,5)

Concatenate

M × N

48

Upsampling × 2

M × N

24
Conv1D
(72,24,5)

Concatenate

M × N

25

Concatenate

N

M

Soft Assignment Matrix

Conv1D
(25,1,1)

...

M × NSigmoid

Reshape

Conv1D(48, 48,15)

D Ã

Figure 7. 1D convolutional DHN: Our 1D convolutional DHN
variant is inspired by the U-Net [42]. The encoder consists of
two 1D-convolution layers of shapes [1, 24, 15] and [24, 48, 15]
([#input channels, #output channels, kernel size]). The decoder
consists of two 1D convolutional layers of shapes [96, 48, 5] and
[72, 24, 5]. Finally, we apply an 1D convolution and a sigmoid
activation to produce Ã.

+6.42% (column-wise maximum). Finally, the proposed
sequential DHN is more accurate compared to the paral-
lel variant of DHN (+3.32% for row-wise and +2.48% for
column-wise maximum). Moreover, for the validity, the
proposed seq gru commits the least missing assignments
(MA) (4.79% and 6.41% for row-wise and column-wise
maximum, respectively), and commits only a few SA com-
pared to other variants.

DHN is a key component of our proposed DeepMOT

Discretization Network WA % (↑) MA% (↓) SA% (↓)

Row-wise
maximum

seq gru (proposed) 92.88 4.79 3.39
seq lstm 83.66 13.79 5.98

paral gru 89.56 8.21 4.99
paral lstm 88.93 8.67 5.38

1d conv 56.43 35.06 2.78

Column-wise
maximum

seq gru (proposed) 93.49 6.41 26.57
seq lstm 87.07 13.54 47.04

paral gru 91.01 7.98 46.25
paral lstm 90.50 8.60 47.43

1d conv 56.18 79.54 7.73

Table 5. Evaluation results. Comparison of different network
structures and settings in terms of WA, MA and SA on test set.

Discretization Network WA % (↑) MA% (↓) SA% (↓)

Row-wise
maximum

seq gru (proposed) 92.71 13.17 9.70
seq lstm 91.64 14.55 10.37

paral gru 86.84 23.50 17.15
paral lstm 71.58 42.48 22.62

1d conv 83.12 32.73 5.73

Column-wise
maximum

seq gru (proposed) 92.36 12.21 3.69
seq lstm 91.93 13.15 4.71

paral gru 87.24 20.56 16.67
paral lstm 72.58 39.55 23.16

1d conv 82.74 32.94 1.11

Table 6. Evaluation results. Comparison of different network
structures and settings in terms of WA, MA and SA on distance
matrices during training.

training framework. To evaluate how well DHN performs
during training as a proxy to deliver gradients from the
DeepMOT loss to the tracker, we conduct the following
experiment. We evaluate DHN using distance matrices D,
collected during the DeepMOT training process. As can be
seen in Tab. 6, the proposed sequential DHN (seq gru) out-
performs the others variants, with a WA of 92.71% for row-
wise and 92.36% for column-wise maximum. For validity,
it also attains the lowest MA: 13.17% (row) and 12.21%
(column). The SA is kept at a low level with 9.70% and
3.69% for row-wise and column-wise maximum discretiza-
tions, respectively. Based on these results, we conclude that
(i) our proposed DHN generalizes well to matrices, used to
train our trackers, and (ii) it produces outputs that closely
resemble valid permutation matrices.

Matrix Size. To provide further insights into DHN, we
study the impact of distance matrix size on the assignment
accuracy. We visualize the relation between WA and the
input matrix size in Fig. 8. For validation, we generate
square matrices with sizes ranging from [2, 300]. Precisely,
we generate D with a uniform distribution [0, 1) and use
Hungarian algorithm implementation from [5] to generate
assignment matrices A∗. For each size, we evaluate 10 ma-
trices, which gives us 2,990 matrices in total. As can be
seen in Fig. 8, (i) the proposed seq gru consistently out-

0 30 60 90 120 150 180 210 240 270 300
Matrix Size

0.4

0.5

0.6

0.7

0.8

0.9

1.0

W
A

Row-Wise Maximum
paral_gru
seq_lstm
paral_lstm

1d_conv
seq_gru

0 30 60 90 120 150 180 210 240 270 300
Matrix Size

0.4

0.5

0.6

0.7

0.8

0.9

1.0

W
A

Column-Wise Maximum
paral_gru
seq_lstm
paral_lstm

1d_conv
seq_gru

Figure 8. Evaluation of performance of DHN and its variants on
D of different sizes.
performs the alternatives. (ii) The assignment accuracy of
DHN and its variants decreases with the growth of the ma-
trix size. Moreover, we observe a performance drop for very
small matrices (i.e., M = N 6 6). This may be due to the
imbalance with respect to the matrix size during the train-
ing.

C. Training Gradient Visualization
The negative gradient should reflect the direction that

minimizes the loss. In in Fig. 9 we plot the negative gradient
of different terms that constitute our DeepMOT loss w.r.t.
the coordinates of each predicted bounding box to demon-
strate visually the effectiveness of our DeepMOT. In this
example, we manually generated the cases which contain
the FP, FN or identity switches. We observe that the nega-
tive gradient does encourage the tracks to be close to their
associated objects during the training.

D. MOT15 Results
We summarize the results we obtain on MOT15 dataset

in Tab. 7. Our key observations are:

(i) For the MOT-by-SOT baseline, we significantly im-
prove over the trainable baselines (SiamRPN and GO-
TURN). DeepMOT-SiamRPN increases MOTA for
+2.3%, MOTP for +0.7% and IDF1 for +2.0%. Re-

(a) (b)

(c) (d)

Figure 9. Visualization of negative gradients from different terms
in the proposed DeepMOT loss: (a) FPs and FNs (b) MOTP (c-d)
IDS (compare (c) t− 1 with (d) t). The predicted bounding-boxes
are shown in blue, the ground-truth are shown in green and the
gradient direction is visualized using red arrows.

Method MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓

2D
M

O
T

20
15

DeepMOT-Tracktor 44.1 75.3 46.0 17.2 26.6 6085 26917 1347
Tracktor [3] 44.1 75.0 46.7 18.0 26.2 6477 26577 1318

DeepMOT-SiamRPN 33.3 74.6 32.7 9.3 43.7 7825 32211 919
SiamRPN [29] 31.0 73.9 30.7 12.6 41.7 10241 31099 1062

DeepMOT-GOTURN 29.8 75.3 27.7 4.0 66.6 3630 38964 524
GOTURN [18] 23.9 72.8 22.3 3.6 66.4 7021 38750 965

AP HWDPL p [8] 38.5 72.6 47.1 8.7 37.4 4005 33203 586
AMIR15 [43] 37.6 71.7 46.0 15.8 26.8 7933 29397 1026
JointMC [21] 35.6 71.9 45.1 23.2 39.3 10580 28508 457
RAR15pub [15] 35.1 70.9 45.4 13.0 42.3 6771 32717 381

Table 7. Results on MOTChallenge MOT15 benchmark.

markably, DeepMOT-SiamRPN suppresses 2,416 FPs
and 143 IDS. We observe similar performance gains
for DeepMOT-GOTURN.

(ii) DeepMOT-Tracktor obtains results, comparative to
the vanilla Tracktor [3]. Different from MOT16 and
MOT17 datasets, we observe no improvements in
terms of MOTA, which we believe is due to the fact
that labels in MOT15 are very noisy, and vanilla
Tracktor already achieves impressive performance.
Still, we increase MOTP for 0.3% and reduce FPs for
392.

