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ABSTRACT
In the last few years, the query-by-visual-example paradigm gained
popularity, specially for content based retrieval systems. As sketches
represent a natural way of expressing a synthetic query, recent re-
search efforts focused on developing algorithmic solutions to ad-
dress the sketch-based image retrieval (SBIR) problem. Within this
context, we propose a novel approach for SBIR that, unlike pre-
vious methods, is able to exploit the visual complexity inherently
present in sketches and images. We introduce academic learning,
a paradigm in which the sample learning order is constructed both
from the data, as in self-paced learning, and from partial curric-
ula. We propose an instantiation of this paradigm within the frame-
work of coupled dictionary learning to address the SBIR task. We
also present an efficient algorithm to learn the dictionaries and the
codes, and to pace the learning combining the reconstruction er-
ror, the prior knowledge suggested by the partial curricula and the
cross-domain code coherence. In order to evaluate the proposed
approach, we report an extensive experimental validation showing
that the proposed method outperforms the state-of-the-art in cou-
pled dictionary learning and in SBIR on three different publicly
available datasets.

CCS Concepts
•Information systems ! Retrieval models and ranking; Image
search; •Computing methodologies ! Machine learning;

Keywords
Sketch-based image retrieval; self-paced and curriculum learning;
dictionary learning

1. INTRODUCTION
Favored by the widespread diffusion of consumer touchscreen

devices, recently sketch-based image retrieval became popular as
an effective means of querying large image databases. Most prior
works on SBIR [12, 8, 27, 28, 9, 29] focused on designing robust
feature representations, common for both sketches and images, to
allow a direct matching. Typically such approaches involve three
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Figure 1: In real SBIR scenarios, humans can easily assess
which of the images or sketches in a pair is easier to learn from,
while providing a full order of the image/sketch set is chimeric.
Academic coupled dictionary learning combines the flexibility
of partial modality-specific curricula with the power of self-
paced learning strategies to automatically construct a full sam-
ple learning order that evolves over time until all training sam-
ples are used to build a dictionary-based representation.

steps: (i) extract edges from images so to approximate the sketch,
(ii) compute a bag-of-words representation [9] of the sketches and
of the resulting edge maps and (iii) finally query by matching the
sketch to the edge maps in the common feature space. The ma-
jor issue with this strategy is that the features are not learned to
satisfy the final objective, i.e., robust matching, but hand-crafted
in advance under the hypothesis that the statistical distributions of
the extracted image edges and the sketch edges are the same. In
addition, such strategy must use the same features for both image
and sketch modalities, while intuitively different features could bet-
ter represent different modalities. It is thus unsurprising that more
recent studies proposed learning methods able to deal with differ-
ent feature representations, thus partially addressing the limitations
of the classical strategy. A series of approaches based on dictio-
nary learning (DL) [19] was proven especially useful for learning
coupled sparse representations [42, 36, 13] from data coming from
different modalities.

In parallel, curriculum learning (CL) [3] and self-paced learn-
ing (SPL) [18] strategies, have proven to be advantageous for vari-
ous tasks in computer vision and multimedia, such as object track-
ing [32], event detection [16] or multimedia search [15]. Both CL
and SPL work by constructing a sample learning order that depends
on the inherent data complexity, such as to increase the chances of
the learner to avoid local minima. Intuitively, SBIR would also ben-
efit from such strategies, since the visual complexity across samples
varies significantly. Indeed, natural images are characterized by
cluttered backgrounds and objects-of-interest captured at different
scales or various poses. Similarly, the visual complexity of sketches
drawn by expert/non-expert shows notorious variations. Both CL



and SPL aim to provide a sample learning order in which the easi-
est samples are presented first. However, while in CL the order is
provided by an expert, in SPL the algorithm extracts the order from
the data points typically based on the representation power of the
model being learned. Recently, Jiang et al. [17] demonstrated the
advantages of combining CL and SPL within the framework of dic-
tionary learning. The authors model the given curriculum as a sort
of a prior for the pacing variable. However, there are two main lim-
itations in this approach. Firstly, data are assumed to come only
from a single domain, and hence the method is not specifically
designed for multimedia tasks such as SBIR. Secondly and more
important, a full curriculum (i.e., complete order) must be speci-
fied. This limits the applicability of the method to small-medium
scale problems, since the curriculum is usually designed by hu-
mans. Moreover, in many tasks (e.g., SBIR), assessing the easiness
of each sample (e.g., image or sketch) may not be straightforward,
and thus full curricula are naturally inappropriate. Finally, full cur-
riculum strategies are not appropriate either for continuously grow-
ing datasets, since each sample must be included into the full order
and this process can be tedious and highly time-consuming.

To tackle the aforementioned issues, in this paper we present a
novel learning paradigm and propose an instantiation within the
framework of dictionary learning so to address the SBIR task. In
academia, the students learn from different sources (textbooks,
courses, on-line, etc) and, more importantly, no single full cur-
riculum is available, but many different partial curricula (one per
source). Indeed, the learning order suggested by the professor
will be different from the order in which a textbook presents the
concepts. In our model, instructors provide prior knowledge in
the form of a partial order of samples, while leaving students the
freedom to decide the full curriculum according to their learning
pace. We formalize this intuition and introduce academic learning,
where different partial curricula influence the learning pace (see
Figure 1). More precisely, we address the SBIR task with an instan-
tiation of academic learning within the framework of coupled dic-
tionary learning, leading to academic coupled dictionary learning
(ACDL). Intuitively, our method learns a pair of image- and sketch-
specific dictionaries, together with the sparse codes, enforcing the
similarity between the codes of corresponding sketches and images.
At each iteration, the representation power of the learned dictionar-
ies, the code correspondence and the partial modality-specific cur-
ricula determine which samples to learn from. We extensively eval-
uate ACDL on three publicly available datasets, demonstrating im-
proved retrieval performance with respect to previous cross-domain
dictionary learning methods and state-of-the art SBIR approaches.

To summarize, the main contributions of this paper are: (i) We
introduce the academic learning paradigm, so to effectively merge
the self-pacing philosophy with modality-specific partial curricula
and propose an instantiation within the framework of coupled dic-
tionary learning, leading to ACDL so as to address the SBIR task;
(ii) We derive an efficient algorithm to learn the modality-specific
dictionaries and codes, assessing the learning pace from the dictio-
nary representation power, the code correspondence and the a priori
partial order from the curricula; (iii) We report an extensive exper-
imental evaluation proving that ACDL outperforms previous cou-
pled dictionary learning methods and other state-of-the-art SBIR
approaches in three different publicly available datasets.

2. RELATED WORK
In this section we describe related work on (i) the addressed task,

SBIR, (ii) the ground learning framework, cross-domain DL and
(iii) the closest learning paradigms to academic learning: SPL and
curriculum learning.

2.1 Sketch-based image retrieval
Early works on SBIR attempted to use generic descriptors, i.e.,

features not designed for this application. Both global (e.g., dis-
tribution of edge pixels [6], elastic contours [4]) and local (e.g.,
SIFT [9]) feature representations were investigated. More recently,
SBIR methods focused on designing ad hoc descriptors, i.e., fea-
tures able to properly describe sketches, which are sparse images
containing strokes. For instance, Hu et al. [12] presented gra-
dient field images and used them in combination with a bag-of-
words approach for retrieving images from sketches. They also
performed an extensive evaluation of these descriptors on a large
dataset, named the Flickr15k dataset. Saavendra et al. [28]
proposed a modified version of the HOG descriptor, called his-
togram of edge local orientations, to explicitly tackle the problem
of sparsity arising when traditional HOG descriptors are applied to
sketches. In [27] mid-level patterns called learned keyshapes were
introduced for representing sketches. Sun et al. [31] described a
large scale SBIR system based on features derived from edge pixels
and Chamfer matching. Shape words features for SBIR were intro-
duced in [38]. Lin et al. [22] proposed the 3D sub-query expansion
approach: to improve the retrieval performance, 2D sketches are
first converted into a 3D sketch model, which is then used to gen-
erate multi-view sketches acting as expanded sub-queries. Qi et
al. [26] introduced a perceptual grouping framework to organize
image edges into a meaningful structure and used it for generat-
ing human-like sketches useful for SBIR. Fine-grained SBIR was
tackled in [21], where the emphasis is on modeling fine-grained
characteristics of sketches to retrieve specific images within object
categories, as opposite to traditional SBIR focusing on retrieving
images of the same class. Cao et al. [5] introduced MindFinder,
an interactive sketch-based image search engine where multimodal
queries (sketch+text) are used for retrieval. A sketch-based system
for manga image retrieval was described in [24]. However, none of
these works proposed a cross-domain DL approach for SBIR.

2.2 Cross-domain dictionary learning
Dictionary learning approaches [19] have become popular in

computer vision and multimedia, as they were shown to be effec-
tive in many tasks, such as image denoising [23] and video event
detection [41]. When data from multiple domains are available,
traditional DL approaches have been extended to benefit from the
wealth of multimodal information. Yang et al. [42] proposed to
learn a set of source-specific dictionaries from samples correspond-
ing to different domains in a coupled fashion and applied it to im-
age super-resolution. In [36] a semi-coupled DL scheme was in-
troduced, where source-specific dictionaries were learned together
with a mapping function which describes the intrinsic relationship
between domains. Similarly, Huang and Wang [13] proposed a
framework to simultaneously learn a pair of domain-specific dictio-
naries and the associated representations. Coupled DL approaches
have been tested on the SBIR task both in [36] and [13]. Similarly,
DL has been employed for other related tasks, i.e., sketch-based 3D
object retrieval [43] or sketch recognition [11]. However, none of
these works considers the sample easiness while learning, i.e., ap-
ply a SPL or a curriculum learning strategy, in order to construct
robust representations.

2.3 Self-paced and curriculum learning
Self-paced [18] and curriculum [3] learning originate from the

idea that models must be learned in an incremental fashion, using
the easy samples before the difficult ones. Due to their general-
ity, these techniques have been considered in a broad spectrum of
learning algorithms, including matrix factorization [45, 17], clus-



Figure 2: Overview of the proposed ACDL framework for sketch-based image retrieval.

tering [39], multi-task [25] and dictionary learning [34]. In the area
of multimedia they have proved successful in many applications
such as media retrieval [15] and event detection [16].

Among previous works, the two studies essentially related to this
paper are [34] and [17]. While Tang et al. [34] proposed a SPL
strategy in the context of dictionary learning, Jiang et al. [17] in-
troduced the first hybrid full curriculum and SPL approach. How-
ever, none of them is able to handle data arising from multiple do-
mains. Our approach does not only overcome this issue, but more
importantly, is naturally able to incorporate domain specific partial
curricula, thus benefiting from the wealth of information present
in both domains. Moreover, opposite to [17] where the need to
account for the difficulty of each training sample greatly limits the
scalability of the method, in ACDL the adoption of partial curricula
permits to tackle large scale problems.

3. ACADEMIC COUPLED DICTIONARY
LEARNING FOR SBIR

As discussed in Section 1, in this paper we introduce the aca-
demic learning paradigm and instantiate it within the framework
of coupled DL so to address SBIR. The proposed approach is ar-
ticulated in two phases (see Figure 2). In the learning phase, the
features extracted from the given set of images and corresponding
sketches are fed into the ACDL method that learns the image and
sketch-specific dictionaries together with the associated codes, tak-
ing into account the modality-specific partial curricula. At retrieval
time, the representation of a sketch is computed by projecting its
feature vector to the learned code. Image retrieval is performed by
searching for the closet image code (in the Euclidean sense) to the
given sketch code. In the following we present the proposed ACDL
method (Section 3.1), its solver (Section 3.2), along with the tech-
nique we use for generating curricula (Section 3.3).

3.1 Academic Coupled Dictionary Learning
Let us assume the existence of K sketches and denote the fea-

tures extracted from the k-th sketch as f S
k 2 RdS . Similarly, we

assume the existence of L images and denote the features extracted
from the l-th image as f I

l 2 RdI . We also assume two N -word
dictionaries, one per modality: QS = [qS

n]
N
n=1 2 RdS⇥N and

QI = [qI
n]

N
n=1 2 RdI⇥N . Each sketch (resp. image) corresponds

to a sparse code cS
k 2 RN (resp. cI

l 2 RN ). We also define
FS = [f S

1 , . . . , f
S
K ] 2 RdS⇥K as the matrix of all sketch features,

and FI , CS and CI analogously. Given the feature matrices FS and
FI , we propose to compute the associated dictionaries and codes by

minimizing the following dictionary representation (DR) loss:

minQS,QI,CS,CI `DR = kFS �QSCSk2F + kFI �QICIk2F
+↵

�
kCSk1 + kCIk1

�
,

s.t. kqS
nk, kqI

nk  1 8n, (1)

where ↵ � 0 is a regularization parameter and k · kF denotes the
Frobenius norm. The constraints remove any scale ambiguities due
to the matrix products QSCS and QICI , while the regularization
terms induce sparsity in the learned codes.

We also assume a relational link between sketches and images
in the training set. Ideally, each sketch corresponds to at least an
image (e.g., for sketch to photo face recognition [37] in the con-
text of security and biometrics applications). Alternatively, the as-
sociation among sketches and images is derived from image class
information [12]. Generally speaking, in this paper we consider
both intra-modality and cross-modality relationships, modeled by
a non-negative weight matrix W 2 R+ (K+L)⇥(K+L). Intuitively,
the larger wpq is, the stronger the relationship between the p-th
and q-th codes is. Importantly, when 1  p, q  K (respec-
tively, K < p, q  K+L), wpq relates two sketches (respectively,
two images) creating an intra-modality link, otherwise wpq relates
a sketch and an image (cross-modality link). Interpreting W as
the weight matrix of a graph and denoting the associated Laplacian
matrix1 by L, the code-coupling (CC) loss is defined as:

`CC = � Tr
⇣
CJLCJ>

⌘
=

1
2
�

K+LX

p,q=1

wpqkcJ
p � cJ

qk2, (2)

where CJ = [cJ
p]

K+L
p=1 = [CS CI] 2 RN⇥(K+L) is the joint code

matrix, and � � 0 is a regularization parameter controlling the
importance of the relational knowledge.

As already mentioned in the introduction, and inspired by previ-
ous works [18, 16], we embrace the philosophy of SP learning in
which there is a pacing binary variable vS

k 2 {0, 1} (respectively
vI
l 2 {0, 1}) associated to sketch k (respectively to image l), indi-

cating whether the observation (sketch or image) has to be used for
learning or not. Importantly, vS

k and vI
l are not fixed and evolve dur-

ing the training phase. Additionally, we relax the binary condition
and vS

k and vI
l become real numbers vS

k, v
I
l 2 [0, 1] since this strat-

egy has proven to be successful in several applications [45, 17]. By
defining VS = diagk(v

S
k) 2 RK⇥K as a diagonal matrix with en-

tries vS
1, . . . , v

S
K , VI analogously to VS, and VJ = diag(VS,VI) ,

1The Laplacian matrix of a graph with weight matrix W is defined
as L = D�W, where D is a diagonal matrix with dpp =

P
q wpq .



we rewrite `DR and `CC:

`DR(Q
S,QI,CJ,VJ) := k(FS �QSCS)VSk2F

+ k(FI �QICI)VIk2F + ↵
�
kCSk1 + kCIk1

�
, (3)

`CC(C
J,VJ) := � Tr

⇣
CJVJLVJ>CJ>

⌘
. (4)

Classically, and in order to avoid trivial solutions (i.e., all v’s set to
zero) a self-paced regularizer is used:

rSP(V
J) = ⌫

 
1
2

KX

k=1

�(vS
k) +

1
2

LX

l=1

�(vI
l)

!
(5)

where �(v) = v2 � 2v, as in [45], and ⌫ � 0 is the self-paced pa-
rameter that increases at each iteration as in traditional SPL meth-
ods [18]. By further considering the code-coupling loss and the
self-paced regularizer, the optimization problem (1) rewrites:

min
QS,QI,CJ,VJ

`DR(Q
S,QI,CJ,VJ)+`CC(C

J,VJ)�rSP(V
J)

s.t. kqS
nk, kqI

nk  1 8n,
0  vS

k, v
I
l  1 8k, l

The major methodological contribution of our work is to include
per-modality partial curricula into the framework of DL with rela-
tional knowledge and to study its behavior within the SPL strategy
already discussed. Subsequently, we assume the existence of two
per-modality sets of constraints CS and C I . Each element of the
sets consists of an index pair meaning that if (k, k0) 2 CS, then
vS
k < vS

k0 and learning should be performed considering a priori
f S
k0 before f S

k, as it corresponds to an easier sample. Depending on
the way the curricula are constructed CS could contain incompati-
bilities, for instance, {(k, k0), (k0, k00), (k00, k)} ⇢ CS. In addition,
the cross-modal terms could also induce incompatibilities between
the two modalities. Therefore, it is desirable to relax the constraints
using a set of slack variables ⇠S

kk0 and ⇠ I
ll0 . In all, the optimization

problem for academic coupled dictionary learning writes:

min
QS,QI,CJ,VJ,⇠J

`DR(Q
S,QI,CJ,VJ) + `CC(C

J,VJ)

� rSP(V
J) + rPC(⇠

J) (6)

s.t. kqS
nk, kqI

nk  1 8n,
0  vS

k, v
I
l  1 8k, l

vS
k � vS

k0 < ⇠S
kk0 , ⇠S

kk0 � 0, 8(k, k0) 2 CS

vI
l � vI

l0 < ⇠ I
ll0 , ⇠

I
ll0 � 0, 8(l, l0) 2 C I,

where ⇠J = [[⇠S
kk0 ](k,k0)2CS [⇠ I

ll0 ](l,l0)2CI ] is the vector of all slack
variables and rPC is the partial curricula regularizer regulated by the
parameter � � 0 and defined as:

rPC(⇠
J) = �

0

@
X

(k,k0)2CS

⇠S
kk0 +

X

(l,l0)2CI

⇠ I
ll0

1

A . (7)

The algorithm we propose to solve (6) is outlined in Algorithm 1
and detailed in the following section.

3.2 Solving ACDL
The ACDL optimization problem is not jointly convex in all

variables. However, efficient alternate optimization techniques can
solve it since it is convex on {QS,QI}, {CJ} and {VJ, ⇠J} when
the other two sets of variables are fixed.

Algorithm 1 ACDL optimisation procedure.
Input: FS, FI and the parameters ↵, �, �.
1: Initialize QS, CS, QI , CI as described in Section 4.
2: repeat
3: Update VJ and ⇠J following (12);
4: Update CS, CI with (10);
5: Update QS, QI by solving (8);
6: Increase ⌫ so to enlarge the training set;
7: until All the training data points are selected.

Output: QS, CS, QI , CI .

Solve for QS and QI. Fixing CJ , VJ and ⇠J , the optimization
problem for QS (analogously for QI) writes:

min
QS

��(FS �QSCS)VS
��2
2

s.t.
��qS

k

��  1. (8)

This problem is a Quadratically Constrained Quadratic Program
(QCQP) that can be solved using gradient descent with e.g. La-
grangian duality [19].
Solve for CJ. By fixing QS, QI , VJ and ⇠J the optimization func-
tion for the codes can be rewritten as:

f(CJ) =
���FS �QSCS�VS

��2
F +

���FI �QICI�VI
��2
F

+ ↵
��CJ

��
1
+ � Tr

⇣
CJVJLVJ>CJ>

⌘
. (9)

According to FISTA [2], f can be viewed as a proximal regulariza-
tion problem, solved using the following recursion (over r):

CJ
r=argmin

CJ

(
kCJ�CJ

r�1+trrf(CJ
r�1)k2F

2tr
+ ↵

��CJ
��
1

)
,

(10)
where tr > 0 is the step size and rf(CJ) = [rf(CS) rf(CI)] is
the concatenation of the two gradients defined as:

rf(CS) = 2QS>(QSCS � FS)(VS)2

+ 2�
�
CSVSLS +CIVILIS�VS, (11)

where the sublaplacian matrices are taken from the Laplacian ma-
trix as L = [LS LSI;LIS LI]. The second gradient, rf(CI) is de-
fined analogously to rf(CS). Moreover, (10) is a standard LASSO
problem whose optimal solution can be found using the feature-
sign search algorithm in [19].
Solve for VJ and ⇠J. By fixing the dictionaries QS, QI and the

codes CJ , we can rewrite the joint optimization problem with re-
spect to VJ and ⇠J as a quadratic programming problem with a set
of linear inequality constraints. Denoting the optimization variable
as y = [[vS

k]k[v
I
l]l[⇠

S
kk0 ]kk0 [⇠ I

ll0 ]ll0 ] 2 RK+L+CS+C I

, the problem
writes:

min
y

y>Ry + b>y (12)

s.t. Gy  h,

where the values of R, b, G and h are defined in the following. R
is a (K+L+CS +C I)⇥ (K+L+CS +C I) matrix with all zeros
except for the first (K + L)⇥ (K + L) block. More precisely:

Rpq =

8
>><

>>:

kf S
p �QScS

pk2 � ⌫/2 q = p  K
kf I

p�K �QIcI
p�Kk2 � ⌫/2 K < q = p  L+K

�wpqkcJ
p � cJ

qk2 1  p 6= q  K + L
0 otherwise

and b = [⌫1>
K+L �1>

CS+C I ]>, where 1K is a K ⇥ 1 vector filled
with ones. G and h represent the inequality and bound constraints



in (6) and their derivation is straightforward. Since there are 2(K+

L + CS + C I) constraints, G 2 R2(K+L+CS+C I)⇥(K+L+CS+C I)

and h 2 R2(K+L)+CS+C I

.

3.3 Laplacian and Curricula Construction
In this section we describe how we construct the modality-

specific curricula and the Laplacian matrix representing the rela-
tional knowledge. However, it is worth noting that ACDL is a gen-
eral framework and other design choices are possible. We build
both the curricula and the Laplacian in the training set from the
sketch and image features and a group association, that could arise
from the class membership or from unsupervised clustering. In our
experiments, we also devised a protocol to construct a curriculum
for sketches from human manual annotations.

3.3.1 Laplacian construction
To build the Laplacian matrix (computed from the weights wpq),

the intra-modality relationships are defined using the Gaussian ker-
nel and the inter-modality with group association, as in [44]:

wpq =

8
>>>>><

>>>>>:

e�kf
S
p�f S

qk2

2
/2�2

, p, q  K

e�kf
I
p�K�f I

q�Kk2

2
/2�2

, K < p, q

1,
p  K < q and p ⇠ q
q  K < p and q ⇠ p

0, otherwise,

(13)

where � is the Gaussian kernel parameter fixed to 1 with no sig-
nificant performance variation around this value. The symbol ⇠
indicates samples belonging to the same cluster/class.

3.3.2 Curriculum construction
Regarding the curricula construction, as stated above, a funda-

mental aspect of the the proposed ACDL framework is the possi-
bility to handle partial curricula. Previous CL or hybrid CL-SPL
methods [3, 17] instead assume that a full curriculum, i.e. a com-
plete order of samples, is provided. This is a strong assumption
that may not be satisfied in real-world large-scale tasks. On the one
hand, even if automatic measures of the easiness of an image [20]
have been developed, these metrics are accurate up to some extent
and therefore deriving a full ranking from these measures may be
inappropriate. On the other hand, manually annotating the entire set
of images represents a huge human workload, highly demanding
for medium-scale problems and chimeric for large-scale datasets.
In addition, if the multimedia dataset is gathered incrementally, the
cost of updating the curriculum grows with the size of the dataset.

The partial curricula for the image domain is obtained by
means of an automated procedure based on previous studies [20,
1]. Intuitively, easy images are those containing non-occluded
high-resolution objects in low-cluttered background. Previous
works [20] proposed to define the easiness of an image from the
“objectness” measures [1]. In the same line of though, we com-
pute the easiness measure as the median of the 30 highest “object-
ness” scores among a set of 1,000 window proposals. This proce-
dure approximates the easiness of a training image. Notice that,
two images with largely different scores are likely to correspond to
samples with different easiness. On the contrary, if the scores are
similar, imposing that the image with the lowest score is the easiest
in the pair may induce some errors. The constraint associated to an
image pair is included in C I only if the difference of their associated
scores exceeds a certain threshold � I (i.e. if one of the images in the
pair is significantly easier than the other).

Contrary to the image domain, there is no widely-accepted pro-
cedure to define the easiness of a sketch. Therefore, we consider
two methods for constructing the partial curriculum in the sketch

Figure 3: The graphical interface used for annotation. Easy
sketches are those with more details and easy images are those
with non-occluded high-resolution objects in low-cluttered
background.

domain. First, an automatic method that follows again the philos-
ophy of [1]. Given a sketch, we randomly sample 100 windows
at different scales and positions. For each window we compute
the “edgeness” score, representing the edge density within the win-
dow as proposed in [1]. Intuitively, the edgeness should implement
the rationale that easy sketches are those with more details. As
previously done for images, the constraint associated to a pair of
sketches is included into CS only if their measure of edgeness dif-
fers by at least �S. Second, a semi-automatic strategy for building
the partial curricula of the sketches by including human annotators
in the loop. A naive retrieval method based on SHOG features [9]
generates potential constraints (pairs of sketches). In details, we
pair each sketch with the closest among the cluster/class. The hu-
man annotator is then queried which sketch is easier to learn from.
Ten PhD students (6 male, 4 female) of age 24.3 ± 1.4 (mean,
standard deviation) performed the annotation after being instructed
that “easy” sketches meant sketches with more details. Importantly,
since ACDL is specifically designed to handle partial curricula, an-
notators had the possibility to “skip” sketch pairs if they were un-
able to decide. A simple GUI (Fig.3) was developed for annotation.

4. EXPERIMENTS
To evaluate the effectiveness of our approach, we conduct exten-

sive experiments on three publicly available datasets: the CUHK
Face Sketch (CUFS) [37], the Flickr15k [12] and the Queen-Mary
SBIR [21]. In our experiments, the dictionaries of ACDL were
initialized with joint DL [42] when both features have the same
dimension and with modality-independent DL otherwise.

4.1 Experiments on CUFS
The CUFS dataset is a very popular benchmark for sketch-to-

face-photo recognition. CUFS contains sketch-photo image pairs
of 188 CUHK students. The recognition task is to identify the face
photo corresponding to a given sketch. We evaluate the perfor-
mance of ACDL on CUFS and compare it to other cross-domain
retrieval methods and previous coupled DL approaches.

4.1.1 Settings
In our experiments, 88 sketch-photo image pairs are randomly

selected for training the model, and the remaining 100 pairs are
used for testing, as in [33]. To facilitate comparison with previous
works [42, 13], we use raw pixels as features. We compare the
proposed ACDL method to seven baseline methods: canonical cor-
relation analysis (CCA), partial least squares (PLS) [30], bilinear
model (Bil) [35], semi-coupled dictionary learning (SCDL) [36],
joint dictionary learning (JDL) [42] and coupled dictionary learn-
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Figure 4: Average recognition rate for all methods on CUFS.

ing (CDL) [13]. For the bilinear model, we used 70 PLS bases and
50 eigenvectors (see [30]). ACDL, SCDL, JDL and CDL are all
DL-based approaches and we set the dictionary size to 50. In all
cases, the recognition is performed using the nearest neighbor on
the newly learned sparse representation as in [30, 13]. For ACDL,
we explicitly evaluate the importance of the relational knowledge
(�) and of self-pacing (⌫). Instead, as both images and sketches
are quite homogeneous (i.e., sketches were drawn by experts, faces
in images are centered and equally illuminated), we did not use
any curriculum (� = 0), The parameters ↵, � were set by cross-
validation to 1 and 5, respectively.

4.1.2 Results
Figure 4 reports average recognition results over five trials.

ACDL(� = 0) achieves the best average recognition rate: 98.6%.
Remarkably, ACDL(� = 0) outperforms CDL, which is the best of
the DL-based approaches. Importantly, we notice that the effect of
the relational knowledge is crucial in the performance of the over-
all method (CDL also uses relational knowledge). Among the com-
pared methods, SCDL, JDL and CDL are the strongest competitors,
achieving 95.2%, 95.4% and 97.4% recognition rate respectively.
This means that DL for cross-modal retrieval is an effective strat-
egy. We also remark that ACDL(� = 0) outperforms the other two
versions of ACDL, suggesting that the relational knowledge within
the SP learning framework is beneficial for accurate retrieval.

4.2 Experiments on Flickr15K
Flickr15k dataset is a widely used dataset for SBIR, contain-

ing around 14, 660 images collected from Flickr and 330 free-hand
sketches drawn by 10 non-expert sketchers. All samples are clas-
sified into 33 categories with a manual annotation for each sample.
As this dataset does not provide a training set, to evaluate our ap-
proach, we partition the dataset into a training set with randomly
chosen 40% samples and a test set with the remaining samples.2

4.2.1 Settings
We compare the retrieval performance of ACDL against several

state of the art SBIR baselines, including SHOG [9] and SIFT,
SSIM, GFHOG tested in [12], Structure Tensor [8], Learned Key
Shapes (LKS) [27] and PerceptualEdge [26]. The first five base-
lines extract low-level features (SHOG, SIFT, SSIM, GFHOG and
StructureTensor) over Canny edge maps (for images) and sketched
images, and then use a bag-of-words (BOW) approach to ob-
tain both image and sketch representations. LKS learns mid-level
sketch patterns named keyshapes. The learned keyshapes are used
to construct image and sketch descriptors. PerceptualEdge uses
an edge grouping framework to create synthesized sketches from
images. The retrieval is performed by querying the synthesized

2Due to the random training/test splitting, performance may differ
from results reported in previous studies. Our experimental proto-
col will be made publicly available.

Table 1: Flickr15K dataset: comparison of different methods.

Methods mAP

StructureTensor [8] 0.0801
SIFT [12] 0.0967
SSIM [12] 0.1068
SHOG [9] 0.1152
GFHOG [12] 0.1245
LKS [27] 0.1640
PerceptualEdge [26] 0.1741

ACDLGFHOG 0.1675
ACDLLKS (� = ⌫ = 0) 0.2278
ACDLLKS 0.2495
ACDLCNN+LKS 0.2656
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Figure 5: Precision recall curves of the different methods on
Flirckr15K dataset.

sketches instead of the images directly. For LKS and Percep-
tualEdge, we use the original codes provided by the authors with
the same parameter setting described in the associated papers, and
we reimplemented other baselines whose codes are not publicly
available. All the methods are evaluated on the same test set for a
fair comparison.

We evaluate the proposed ACDL with different settings, includ-
ing (i) ACDLGFHOG: ACDL using GFHOG features for both image
and sketch domains; (ii) ACDLLKS, (� = ⌫ = 0): ACDL without
the curricula and self-pacing, using LKS features for both image
and sketch domains; (iii) ACDLLKS: ACDL using LKS features for
both image and sketch domains; (iv) ACDLCNN+LKS: ACDL us-
ing CNN features for image domain (i.e., features extracted from
the sixth layer of the Caffe reference network trained on ImageNet
[14]) and LKS features for sketch domain. The sketch curriculum,
when used, is constructed using 60% of human annotations, since
we did not observe any significant differences between the auto-
matic and the manual procedures (see Section 4.4). For all ACDL
methods, we set ↵,�, � with cross-validation and N = 1000.

4.2.2 Results
The quantitative SBIR performance comparison is shown in Ta-

ble 1, reporting the mean average precision (mAP), and in Fig-
ure 5, depicting the precision-recall (PR) curve. We observe that
ACDLCNN+LKS obtains the best mAP of 0.2656, which corre-
sponds to a significant performance increase (7.13 points improve-
ment) with respect to the best state-of-the-art method (0.1741 of
PerceptualEdge [26]). The advantage of the academic learning
paradigm and its instantiation under the framework of dictionary



Figure 6: Top 5 retrieval results with sample query sketches in the Flickr15K dataset. Red boxes show false positive retrievals.

Table 2: Benchmark on the Queen-Mary SBIR dataset.

Methods mAP

SIFT [12] 0.0685
SSIM [12] 0.0745
SP-SHOG [8] 0.0804
SP-GFHOG [12] 0.0858
LKS [27] 0.1182
PerceptualEdge [26] 0.1246

ACDLLKS (� = ⌫ = 0) 0.1265
ACDLLKS 0.1467
ACDLCNN+LKS 0.1598

learning is clear and independent of the features used. Indeed,
ACDLGFHOG and ACDLLKS compares favorably to GFHOG [12]
and to LKS [27], with 4.3 points and 7.61 points improvement, re-
spectively. Similarly, the clear performance gap when ACDLLKS
is compared to the ACDLLKS, (� = ⌫ = 0), demonstrates the
usefulness of the combination of a variable pacing rate under the
prior knowledge of multiple partial curricula. The fact that the best
performance is obtained with ACDLCNN+LKS confirms our original
intuition that different features can represent better the two differ-
ent modalities. Finally, Figure 6 shows some qualitative results
(top-five retrieved images) associated with the proposed method.

4.3 Experiments on Queen-Mary SBIR
The Queen-Mary SBIR dataset [21] contains 1,120 sketches and

7,267 images, built by intersecting 14 common categories from the
Eitz 20,000 sketch dataset [7] and the PASCAL VOC dataset [10].
In this dataset, cluttered background conditions and significant
scale variations greatly increase the complexity of the retrieval task.
We use the given training and test set. While this dataset was con-
ceived for fine-grained SBIR, since our task is category-level SBIR,
we only use image-level category annotations.

4.3.1 Settings
We compare our approach to SIFT [12], SSIM [12], SP-

SHOG [21], SP-GFHOG [12], LKS [27], PerceptualEdge [26].
SP-HOG and SP-GFHOG use a spatial pyramid model on SHOG
and GFHOG features respectively to construct a new representa-
tion. The QueenMary SBIR dataset is designed for complex SBIR
task, therefore we do not consider the weakest baselines (i.e., Struc-
tureTensor) evaluated on Flickr15k dataset, and use SP-SHOG and
SP-GFHOG instead of SHOG and GFHOG, as it has been demon-
strated that the spatial pyramid model is able to obtain more ro-
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Figure 7: Precision recall curves of the different methods on
Queen-Mary SBIR dataset.

bust image representations than BOW. We evaluate the proposed
ACDL using the settings described in Section 4.2, i.e. ACDLLKS
(� = ⌫ = 0), ACDLLKS and ACDLCNN+LKS, and the strategy for
constructing the curricula. We set N = 1000 and cross-validate
for the other parameters.

4.3.2 Results
From Table 2, we observe that the mAP of ACDLCNN+LKS is

0.1598, i.e., 3.52 points better than the best of all the baselines,
which is not a trivial improvement on this challenging dataset.
ACDLCNN+LKS also outperforms ACDLLKS, clearly demonstrating
the effectiveness of using different descriptors for sketches and im-
ages in SBIR. We also believe that LKS features are not robust
enough to represent objects with various poses and cluttered back-
grounds, as in Queen-Mary SBIR dataset. ACDLLKS obtains a clear
improvement over ACDLLKS, (µ = � = 0), further verifying the
usefulness of the proposed learning scheme. Figure 7 depicts the
PR curves of the different methods, confirming the findings so far.
Additionally, Figure 8 shows the retrieval performance for each
category-level task. We observe that for most of the classes (ex-
cept for Airplane and Bicycle), ACDLCNN+LKS significantly out-
performs all the baseline methods. Finally, Figure 9 reports the top
5 retrieval results of ACDLCNN+LKS for six sample query sketches.

4.4 In-depth analysis of ACDL
Finally, we provide some additional results and an empirical

analysis (on the Flickr15k dataset) of the proposed approach re-
garding several aspects.



Airplane Train Sheep Bicycle Bus Bird Car Chair Cat Table Dog Horse Cow Airplane

m
AP

0

0.05

0.1

0.15

0.2

0.25
SIFT[12] SSIM[12] SP-SHOG[8] SP-GFHOG[12] LKS[28] PerceptualEdge[27] ACDLCNN+LKS

Figure 8: Retrieval performance comparison for each category on Queen-Mary SBIR dataset.

Figure 9: Top 5 retrieved images (2nd to 6th columns) using
the query sketch samples (1st column) in the QueenMary SBIR
dataset. Red boxes show false positive retrievals.

4.4.1 Sensitivity analysis
In order to assess the influence of the different model parameters

on ACDL retrieval performance, we report a sensitivity analysis
around the working point. Figure 10 shows the mAP as a func-
tion of ↵,�, �, N . The analysis on ↵,� and � is in the range
[10�2, 102], on N in the range [200, 2400]. The plots clearly show
that, while the method is sensitive to ↵ and �, its performance does
not change drastically with a wide range of � and N . The sensi-
tivity on � was already found in the experiments on CUFS and by
previous researchers [13].

4.4.2 Analysis of curriculum construction
In our approach, the human and the automated annotator can

both be employed to construct the partial curricula. To investigate
the difference in terms of the final retrieval performance, we plot
the mAP as a function of ⇢, the proportion of constraints used for
the sketch curriculum relative to the number of possible constraints.
The proportion of image constraints was set to 10% of all possible
constraints. Figure 11 shows these two plots. While the human an-
notations build a more useful partial curricula, the differences when
compared with the automated curricula constructions are tiny. In-
terestingly, the excess of constraints leads to a slight decrease in
performance, which is an experimental finding that supports the
use of partial curricula for SBIR.

α
10-2 10-1 100 101 102

m
AP

0.05

0.1

0.15

0.2

0.25

0.3

β
10-2 10-1 100 101 102

m
AP

0.05

0.1

0.15

0.2

0.25

0.3

γ
10-2 10-1 100 101 102

m
AP

0.05

0.1

0.15

0.2

0.25

0.3

N(×100)
2 3 5 8 10 12 15 18 20 24

m
AP

0.05

0.1

0.15

0.2

0.25

0.3

Figure 10: Empirical analysis of the model parameters: ↵, �, �
and the dictionary size N .

;
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
AP

0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28

Human-annotator
Automated-annotator

Figure 11: Performance of the automated and human-
annotated sketch partial curricula.

4.4.3 Convergence analysis
Figure 12 plots the objective function value as a function of the

iteration index for the proposed learning models ACDL and ACDL
(� = ⌫ = 0) for one of our experiments. These results clearly
demonstrate the convergence of the proposed iterative optimization
procedure. ACDL and ACDL (� = ⌫ = 0) attain a stable solution
within less than 40 iterations and 30 iterations respectively, proving
the efficiency of the algorithm proposed to solve the ACDL opti-
mization problem. It is worth noting that ACDL reaches a much
lower local minima than ACDL (� = ⌫ = 0) (6.8 ⇥ 104 vs.
1.98 ⇥ 105), verifying the beneficial effect of the proposed partial
curriculum and self-paced learning scheme.

4.4.4 Computational analysis
To perform an empirical analysis of the computational overhead,

we ran experiments on a PC with a quad core (2.1 GHz) CPU,
64GB RAM and an Nvidia Tesla K40 GPU. The proposed SBIR
approach is implemented mostly in Matlab, and partially in C++
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Table 3: Computational cost of the different training steps.

Phase Component Time overhead

Feature
extraction

CNN (for images) 0.04 sec/sample
LKS (for sketches) 1.1 sec/sample

Training
Curriculum Construction 8 min

ACDL 27 min
ACDL(⌫ = � = 0) 21 min

(the most computationally expensive components). For LKS fea-
tures [27], we use a C++ implementation, and wrap it to be called
from Matlab. For CNN image features, the Caffe reference net-
work pre-trained on ImageNet [14] is used to extract features from
the sixth layer. In the following, we conduct the analysis from the
off-line training phase and the on-line retrieval phase respectively.

Off-line retrieval time
The training phase of our method mainly contains three steps: (i)

feature extraction, (ii) curriculum construction and (iii) ACDL op-
timization. Table 3 reports computational times of different compo-
nents of the method. For the feature extraction, we consider CNN
features from the image domain, which cost 0.04 seconds per im-
age sample. The CNN image features are extracted with the GPU.
LKS is used to extract features from the sketch domain, and obtains
a speed of 1.1 seconds per sketch sample. The automated curricu-
lum construction takes around 8 minutes, and training ACDL and
ACDL (⌫ = � = 0) with 50 iterations cost 27 and 21 minutes,
respectively.

Figure 13 shows elapsed times of updating QI , QS, CI & CS

and V & ⇠ of each iteration within the model training. The in-
put for ACDL is CNN features (for images) and LKS features (for
sketches). 4833 and 132 are the number of training image and
sketch samples, respectively. For curricula, we use the same strat-
egy as in Section 4.2 (10% of image constraints and 60% of sketch
constraints) as at this ratio the retrieval performance and the com-
putational overhead reach good balance. The average elapsed times
of these four components within the first 50 iterations are 6.5, 4.8,
12.1, 6.9 seconds, respectively. Updating V & ⇠ occupies only
around 20% of the entire training time, demonstrating the reason-
able computational efficiency of the proposed ACDL scheme.

On-line retrieval time
Online retrieval efficiency is a very important performance in-

dex for SBIR, especially for large-scale retrieval scenarios. We
compare the online retrieval time of our method with the state-of-
the-art, and the results are shown in Figure 14. Our method (here
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we consider ACDLCNN+LKS) contains three steps for the retrieval:
(i) feature extraction from a query sketch sample using LKS, (ii)
dictionary mapping to obtain a new feature representation and (iii)
query the image features database with k-NN. The last two steps
are very fast, and the feature extraction using LKS takes around 1
second. The average retrieval time for each query sample is around
1.18 seconds. PerceptualEdge method achieves the best retrieval
speed, as it uses only two steps namely the HOG feature extraction
and direct matching. The retrieval speed of ours is comparable to
the LKS method, and almost 2 times faster than GFHOG, SHOG,
SIFT and SSIM, which first extract features, and then construct
bag-of-words features and finally perform the retrieval. The reason
is that the step of constructing the bag-of-words features is more
time consuming than the dictionary mapping step.

5. CONCLUSIONS
In this paper we introduce academic coupled dictionary learning

(ACDL) to tackle the SBIR task. In our approach the learning pace
is determined from the reconstruction error, the cross-modal code
coherence and the prior knowledge suggested by the modality-
specific partial curricula. Importantly, the proposed framework nat-
urally handles different descriptors for the sketch and the image do-
mains. Therefore, domain-specific discriminative feature represen-
tations (e.g., CNN features for images) are considered, overcoming
the limitations of previous works. Extensive evaluations on three
publicly available datasets show that ACDL outperforms state-of-
the-art approaches for SBIR. Since the method is able to learn from
a small training subset and handle partial curricula, the proposed
method is applicable on very large-scale datasets. Future works
include investigating cross-domain deep architectures [40] able to
incorporate prior information from the partial curricula.
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