
Unsupervised Probabilistic Learning with Latent Variables

Lecture 3: Dynamical variational autoencoders, application to speech enhancement.

MLSS Africa 2023, Cape Town Slides: https://xavirema.eu/MLSS2023/

Xavier Alameda-Pineda

RobotLearn team, Inria at University Grenoble-Alpes,

Jean-Kuntzman CNRS Laboratory, Multidisciplinary Institute of Artificial Intelligence

https://xavirema.eu/MLSS2023/

Summary of the three VAE-based models for AV-SE

Conditional VAE:

• Training VAE via SGD.

• Systematic AV fusion.

• Learning noise parameters via MCEM.

VAE-MM:

• Training two VAEs via SGD.

• Mixing AV fusion - two speech models.

• Learning noise parameters via VEM.

MIN-VAE:

• Training all 3 networks via VEM+SGD.

• Mixing AV fusion - single speech model.

• Learning noise parameters via VEM.
1

Motivation for DVAE

All these models process speech data independently per each frame,

that is regardless of the frame order.

But speech is sequential, and order matters. What can we do?

(we will forget about visual data in this lecture)

Are there VAE-like models able to deal with sequential data?

Yes, we will call them dynamical variational autoencoders (DVAE).

We’ll also discuss their use in unsupervised speech enhancement?

2

Reconstruction?

O
rig

in
al

 S
pe

ct
ro

gr
am

Re
co

ns
tr

uc
te

d
Sp

ec
t.

(V
AE

)
Re

co
ns

tr
uc

te
d

Sp
ec

t.
(D

VA
E)

Original (top) Reconstruction VAE (middle) Reconstruction DVAE (bottom)
3

Generation?

Time (s)

Fr
e
q

u
e
n
cy

 (
H

z)

Time (s)

Fr
e
q

u
e
n
cy

 (
H

z)

Generation VAE (left) Generation DVAE (right)

4

Lecture’s Outline

1 Formalising Dynamical Variational Autoencoders

2 Inference network: conditional independence and Markov blankets

3 DVAE: general case, implementation and learning

4 DVAEs for unsupervised speech enhancement

4

Formalising Dynamical Variational

Autoencoders

Probabilistic Sequential Modeling

We would like to model sequences of observations and latent variables:

Observed sequence: x1:T = {xt ∈ RF }Tt=1

Latent sequence: z1:T = {zt ∈ RD}Tt=1

Generative sequential modeling consists in defining the joint distribution with temporal

dependencies, rather than the frame-wise joint distribution (as a vanilla VAE does):

pDVAE
θ (x1:T , z1:T) 6= pVAE

θ (x1:T , z1:T) =

T∏
t=1

pθ(xt, zt).

5

Chain rule

Using the chain rule we can write the joint distribution as a product of conditionals:

p(x1:T , z1:T) = p(z1)p(x1|z1)
T∏
t=2

p(zt|x1:t−1, z1:t−1)p(xt|x1:t−1, z1:t)

Generative process:

6

Chain rule

Using the chain rule we can write the joint distribution as a product of conditionals:

p(x1:T , z1:T) = p(z1)p(x1|z1)
T∏
t=2

p(zt|x1:t−1, z1:t−1)p(xt|x1:t−1, z1:t)

Generative process:

6

Chain rule

Using the chain rule we can write the joint distribution as a product of conditionals:

p(x1:T , z1:T) = p(z1)p(x1|z1)
T∏
t=2

p(zt|x1:t−1, z1:t−1)p(xt|x1:t−1, z1:t)

Generative process:

6

Chain rule

Using the chain rule we can write the joint distribution as a product of conditionals:

p(x1:T , z1:T) = p(z1)p(x1|z1)
T∏
t=2

p(zt|x1:t−1, z1:t−1)p(xt|x1:t−1, z1:t)

Generative process:

6

Chain rule

Using the chain rule we can write the joint distribution as a product of conditionals:

p(x1:T , z1:T) = p(z1)p(x1|z1)
T∏
t=2

p(zt|x1:t−1, z1:t−1)p(xt|x1:t−1, z1:t)

Generative process:

6

Chain rule

Using the chain rule we can write the joint distribution as a product of conditionals:

p(x1:T , z1:T) = p(z1)p(x1|z1)
T∏
t=2

p(zt|x1:t−1, z1:t−1)p(xt|x1:t−1, z1:t)

Generative process:

6

Chain rule

Using the chain rule we can write the joint distribution as a product of conditionals:

p(x1:T , z1:T) = p(z1)p(x1|z1)
T∏
t=2

p(zt|x1:t−1, z1:t−1)p(xt|x1:t−1, z1:t)

Generative process:

The distribution p(zt+1|z1:t,x1:t) is not a

prior distribution anymore, ...

...it is parametric and it might be

auto-regressive (AR).

p(xt+1|z1:t+1,x1:t) might be AR as well.

6

Very well-known particular case: Kalman

A particular case of the above paradigm are linear dynamical systems (a.k.a. Kalman filter).

Assuming the following conditional independence hypothesis:

p(zt|x1:t−1, z1:t−1) = p(zt|zt−1) p(xt|x1:t−1, z1:t) = p(xt|zt),

the joint distribution simplifies as:

p(x1:T , z1:T) = p(z1)p(x1|z1)
T∏
t=2

p(zt|zt−1)p(xt|zt).

This is the family of state-space models (SSMs) introduced by

Kalman in 1960 (linear-Gaussian SSMs with continuous state

and hidden Markov models with discrete state).

7

Very well-known particular case: Kalman

A particular case of the above paradigm are linear dynamical systems (a.k.a. Kalman filter).

Assuming the following conditional independence hypothesis:

p(zt|x1:t−1, z1:t−1) = p(zt|zt−1) p(xt|x1:t−1, z1:t) = p(xt|zt),

the joint distribution simplifies as:

p(x1:T , z1:T) = p(z1)p(x1|z1)
T∏
t=2

p(zt|zt−1)p(xt|zt).

This is the family of state-space models (SSMs) introduced by

Kalman in 1960 (linear-Gaussian SSMs with continuous state

and hidden Markov models with discrete state).

7

(Deep?) Kalman/Markov model

The standard Kalman (HMM) models, the dependency is linear (left),

while in the deep counterparts it is non-linear (right)!

Kalman filter:

pθz(zt|zt−1) = N
(
zt;Atzt−1,Qt

)
pθx(xt|zt) = N

(
xt;Btzt,Rt

)
,

Deep Kalman filter:

pθz(zt|zt−1) = N
(
zt;µθz(zt−1),Σθz(zt−1)

)
pθx(xt|zt) = N

(
xt;µθx(zt),Σθx(zt)

)
,

The non-linearities can be implemented with feed-forward neural networks, as in VAEs.

8

Can we learn it?

Recall that, for learning VAE, we needed an auxiliary inference (encoder) network, that

approximates the posterior:

This is our next objective!

9

Inference network: conditional

independence and Markov blankets

Sequential Inference Network

As in the VAE, we need to approximate the posterior distribution:

pθ(z1:T |x1:T) = qφ(z1:T |x1:T)

We can always use the Bayes theorem to write:

qφ(z1:T |x1:T) =

T∏
t=1

qφ(zt|z1:t−1,x1:T)

Can we simplify each of the terms further? It depends on generative model.

For instance, for (deep) kalman filter we have the following result:

pθ(zt|z1:t−1,x1:T) = pθ(zt|zt−1,xt:T)

But how to obtain it?

10

Sequential Inference Network

As in the VAE, we need to approximate the posterior distribution:

pθ(z1:T |x1:T) = qφ(z1:T |x1:T)

We can always use the Bayes theorem to write:

qφ(z1:T |x1:T) =

T∏
t=1

qφ(zt|z1:t−1,x1:T)

Can we simplify each of the terms further? It depends on generative model.

For instance, for (deep) kalman filter we have the following result:

pθ(zt|z1:t−1,x1:T) = pθ(zt|zt−1,xt:T)

But how to obtain it?

10

Sequential Inference Network

As in the VAE, we need to approximate the posterior distribution:

pθ(z1:T |x1:T) = qφ(z1:T |x1:T)

We can always use the Bayes theorem to write:

qφ(z1:T |x1:T) =

T∏
t=1

qφ(zt|z1:t−1,x1:T)

Can we simplify each of the terms further? It depends on generative model.

For instance, for (deep) kalman filter we have the following result:

pθ(zt|z1:t−1,x1:T) = pθ(zt|zt−1,xt:T)

But how to obtain it?

10

Conditional Independence

You might very well know what “independence” means:

x ⊥⊥ y ⇔ p(x,y) = p(x)p(y)⇔ p(x|y) = p(x).

Conditional independence is defined in a similar way, but conditionned to z:

x ⊥⊥ y | z ⇔ p(x,y|z) = p(x|z)p(y|z)⇔ p(x|y, z) = p(x|z).

This means that z is breaking the link between x and y: if we know z, y does not bring any

extra information to describe x.

In models with lots of variables, we cannot test all possible subsets of variables z, we need an

automatic way to check that.

11

Conditional Independence

You might very well know what “independence” means:

x ⊥⊥ y ⇔ p(x,y) = p(x)p(y)⇔ p(x|y) = p(x).

Conditional independence is defined in a similar way, but conditionned to z:

x ⊥⊥ y | z ⇔ p(x,y|z) = p(x|z)p(y|z)⇔ p(x|y, z) = p(x|z).

This means that z is breaking the link between x and y: if we know z, y does not bring any

extra information to describe x.

In models with lots of variables, we cannot test all possible subsets of variables z, we need an

automatic way to check that.

11

Markov Blankets

(Disclaimer: we are taking a shorcut. Other key concepts are path blocking and D-separation.)

The Markov Blanket of x, B(x) is the set of nodes isolating x from the rest of the graph.

A B C D

E
F G

H

I J K
L

In the case above: B(E) = {A,B, I,J}, that is the set of parents, children and co-parents

(other parents of its children).

12

Let’s take a look back at DKF

We relise that zt−1 is isolating {zt,xt:T } from the past:

(zt−1 is the Markov blanket of {zt,xt:T })

pθ(zt|z1:t−1,x1:T) = pθ(zt|zt−1,xt:T)

It seems natural to impose the same dependencies in the inference network:

pθ(z1:T |x1:T) =
T∏
t=1

pθ(zt|zt−1,xt:T) ≈
T∏
t=1

qφ(zt|zt−1,xt:T)

Note: It is OK to simplify even further, but you need to know what you are doing.

13

Let’s take a look back at DKF

We relise that zt−1 is isolating {zt,xt:T } from the past:

(zt−1 is the Markov blanket of {zt,xt:T })

pθ(zt|z1:t−1,x1:T) = pθ(zt|zt−1,xt:T)

It seems natural to impose the same dependencies in the inference network:

pθ(z1:T |x1:T) =

T∏
t=1

pθ(zt|zt−1,xt:T) ≈
T∏
t=1

qφ(zt|zt−1,xt:T)

Note: It is OK to simplify even further, but you need to know what you are doing.

13

DVAE: general case,

implementation and learning

The general (causal) case

General umbrella for all (causal) DVAEs:

pθ(x1:T , z1:T) =

T∏
t=1

pθz(zt|x1:t−1, z1:t−1)pθx(xt|x1:t−1, z1:t),

where

pθz(zt|x1:t−1, z1:t−1) = N
(
zt;µθz(. . .), diag{vθz(. . .)}

)
,

pθx(xt|x1:t−1, z1:t) = N
(
xt;µθx(. . .), diag{vθx(. . .)}

)
,

and {µθz ,vθz}, and {µθx ,vθx} are non-linear functions of the conditionning variables.

Which kind of networks can be use to construct these functions?

RNN, Transformers, . . .

14

The general (causal) case

General umbrella for all (causal) DVAEs:

pθ(x1:T , z1:T) =

T∏
t=1

pθz(zt|x1:t−1, z1:t−1)pθx(xt|x1:t−1, z1:t),

where

pθz(zt|x1:t−1, z1:t−1) = N
(
zt;µθz(. . .), diag{vθz(. . .)}

)
,

pθx(xt|x1:t−1, z1:t) = N
(
xt;µθx(. . .), diag{vθx(. . .)}

)
,

and {µθz ,vθz}, and {µθx ,vθx} are non-linear functions of the conditionning variables.

Which kind of networks can be use to construct these functions? RNN, Transformers, . . .

14

Example with vanilla RNN

Recall the DVAE generative model:

pθ(x1:T , z1:T) =

T∏
t=1

pθz(zt|x1:t−1, z1:t−1)pθx(xt|x1:t−1, z1:t).

The conditional distributions are parametrized, for instance:

- ht = σ(W xhxt−1 +W zhzt−1 +W hhht−1 + bh),

- pθz(zt|x1:t−1, z1:t−1) = N
(
zt;µθz(ht), diag{vθz(ht)}

)
,

- pθx(xt|x1:t−1, z1:t) = N
(
xt;µθx(zt,ht), diag{vθx(zt,ht)}

)
.

In this example, the same RNN is used for x and for z. This is an arbitrary choice.

15

Inference for the general case

In the general case, we cannot simplify the dependencies of the inference model:

qφ(z1:T |x1:T) =

T∏
t=1

qφ(zt|z1:t−1,x1:T),

where typically we have (µ̃φ, ṽφ are non-linear functions of z1:t−1, x1:T):

qφ(zt|z1:t−1,x1:T) = N
(
zt; µ̃φ(. . .), diag{ṽφ(. . .)}

)
.

One possible parametrization of the conditional posterior of zt is given as follows:

qφ(zt|z1:t−1,x1:T) = N
(
zt; µ̃φ

(→
ht,
←
ht

)
, diag

{
ṽφ

(→
ht,
←
ht

)})
,

where:

-
→
ht = σ(

→
W xhxt−1 +

→
W zhzt−1 +

→
W hh

→
ht−1 +

→
bh) – encodes causal dependencies.

-
←
ht = σ(

←
W xhxt +

←
W hh

←
ht+1 +

←
bh) – encodes non-causal dependencies.

16

Inference for the general case

In the general case, we cannot simplify the dependencies of the inference model:

qφ(z1:T |x1:T) =

T∏
t=1

qφ(zt|z1:t−1,x1:T),

where typically we have (µ̃φ, ṽφ are non-linear functions of z1:t−1, x1:T):

qφ(zt|z1:t−1,x1:T) = N
(
zt; µ̃φ(. . .), diag{ṽφ(. . .)}

)
.

One possible parametrization of the conditional posterior of zt is given as follows:

qφ(zt|z1:t−1,x1:T) = N
(
zt; µ̃φ

(→
ht,
←
ht

)
, diag

{
ṽφ

(→
ht,
←
ht

)})
,

where:

-
→
ht = σ(

→
W xhxt−1 +

→
W zhzt−1 +

→
W hh

→
ht−1 +

→
bh) – encodes causal dependencies.

-
←
ht = σ(

←
W xhxt +

←
W hh

←
ht+1 +

←
bh) – encodes non-causal dependencies.

16

Learning: ELBO

The objective function is slightly different compared with standard VAEs:

L(x1:T ;φ,θ) =

T∑
t=1

Eqφ(z1:t|x1:T)[ln pθx(xt|x1:t−1, z1:t)]

−
T∑
t=1

Eqφ(z1:t−1|x1:T)

[
DKL

(
qφ(zt|z1:t−1,x1:T)

∥∥∥ pθz(zt|x1:t−1, z1:t−1)
)]

• The reconstruction and regularisation terms are evaluated at every frame t.

• Because of the model, the KL term depends on previous latent variables ⇒ sampling.

• The sampling occurs sequentially and cannot be paralelized!

17

Learning: ELBO

The objective function is slightly different compared with standard VAEs:

L(x1:T ;φ,θ) =

T∑
t=1

Eqφ(z1:t|x1:T)[ln pθx(xt|x1:t−1, z1:t)]

−
T∑
t=1

Eqφ(z1:t−1|x1:T)

[
DKL

(
qφ(zt|z1:t−1,x1:T)

∥∥∥ pθz(zt|x1:t−1, z1:t−1)
)]

• The reconstruction and regularisation terms are evaluated at every frame t.

• Because of the model, the KL term depends on previous latent variables ⇒ sampling.

• The sampling occurs sequentially and cannot be paralelized!

17

DVAE Review & Code

Six (of the many) different models in the literature belong to the DVAE family:

STORN J. Bayer and C. Osendorfer, Learning Stochastic Recurrent Networks, arXiv, 2014

VRNN J. Chung et al., A recurrent latent variable model for sequential data, NeurIPS, 2015

SRNN* M. Fraccaro et al., Sequential neural models with stochastic layers, NeurIPS, 2016

DMM* R. Krishnan et al., Structured Inference Networks for Nonlinear State Space Models, AAAI, 2017

DSAE Y. Li and S Mandt, Disentangled sequential autoencoder, ICML, 2018.

RVAE* S. Leglaive et al., A recurrent variational autoencoder for speech enhancement, ICASSP 2020

Different conditional independence assumptions.

* the encoder is compliant with the true posterior.

Check “Dynamical Variational Autoencoders: A Comprehensive Review”, FnT ML:

• review and discuss these models (and more) with unified notations,

• compare their performance for analysis/resynthesis of speech signals,

• provide an implementation: https://github.com/XiaoyuBIE1994/DVAE-speech.

18

https://github.com/XiaoyuBIE1994/DVAE-speech

DVAE Review & Code

Six (of the many) different models in the literature belong to the DVAE family:

STORN J. Bayer and C. Osendorfer, Learning Stochastic Recurrent Networks, arXiv, 2014

VRNN J. Chung et al., A recurrent latent variable model for sequential data, NeurIPS, 2015

SRNN* M. Fraccaro et al., Sequential neural models with stochastic layers, NeurIPS, 2016

DMM* R. Krishnan et al., Structured Inference Networks for Nonlinear State Space Models, AAAI, 2017

DSAE Y. Li and S Mandt, Disentangled sequential autoencoder, ICML, 2018.

RVAE* S. Leglaive et al., A recurrent variational autoencoder for speech enhancement, ICASSP 2020

Different conditional independence assumptions.

* the encoder is compliant with the true posterior.

Check “Dynamical Variational Autoencoders: A Comprehensive Review”, FnT ML:

• review and discuss these models (and more) with unified notations,

• compare their performance for analysis/resynthesis of speech signals,

• provide an implementation: https://github.com/XiaoyuBIE1994/DVAE-speech. 18

https://github.com/XiaoyuBIE1994/DVAE-speech

Results on speech analysis-resynthesis (reconstruction)

Various metrics, the SI-SDR is the scale-invariant signal-to-noise ratio.

DKF/RVAE/SRNN outperform the VAE, which does not model cross-frame dependencies.

19

DVAEs for unsupervised speech

enhancement

Unsupervised Speech Enhancement

Speech Enhancement: Remove the background noise from the observed mixture speech.

Short-time Fourier transform (STFT) is a time-frequency (matrix) representation.

x︸︷︷︸
Noisy mixture

= s︸︷︷︸
Clean speech

+ b︸︷︷︸
Noise signal

Unsupervised (our work): Learn a generative audio-visual model for clean speech and

combine it with an unsupervised noise model at test time

Unsupervised SE is more flexible since it adapts to various noises.

20

Unsupervised speech enhancement: overview

Train a generative speech model with clean data: {si}Ni=1.

θ s pθ(s) ≈ pdata(s)

Test: learn the noise parameters of x:

θ s

ψ b

+ x

Note: at test time, θ is frozen, and s becomes a latent variable. Let’s detail a bit more RVAE!

21

Unsupervised speech enhancement: overview

Train a generative speech model with clean data: {si}Ni=1.

θ s pθ(s) ≈ pdata(s)

Test: learn the noise parameters of x:

θ s

ψ b

+ x

Note: at test time, θ is frozen, and s becomes a latent variable. Let’s detail a bit more RVAE!

21

Recurrent Variational Autoencoder (RVAE)

Causal version (C-RVAE):

pθs(s1:T , z1:T) =

T∏
t=1

p(zt)pθs(st|z1:t),

where p(zt) = N (0, I) and pθs(st|z1:t) = Nc
(
st;0, diag{vθs(z1:t)}

)

Non-causal version (NC-RAVE)

pθs(s1:T , z1:T) =
T∏
t=1

p(zt)pθs(st|z1:T),

where p(zt) = N (0, I) and pθs(st|z1:T) = Nc
(
st;0, diag{vθs(z1:T)}

)

22

Recurrent Variational Autoencoder (RVAE)

Causal version (C-RVAE):

pθs(s1:T , z1:T) =

T∏
t=1

p(zt)pθs(st|z1:t),

where p(zt) = N (0, I) and pθs(st|z1:t) = Nc
(
st;0, diag{vθs(z1:t)}

)
Non-causal version (NC-RAVE)

pθs(s1:T , z1:T) =
T∏
t=1

p(zt)pθs(st|z1:T),

where p(zt) = N (0, I) and pθs(st|z1:T) = Nc
(
st;0, diag{vθs(z1:T)}

)
22

Noisy speech model

At test time, the clean speech signal is latent, and we consider the following generative model:

pθ(x1:T , s1:T , z1:T) =

T∏
t=1

p(zt)pθs(st|z1:T)pθx(xt|st),

where xt is a noisy speech frame, whose likelihood is defined by:

pθx(xt|st) = Nc
(
xt; st, diag

{
(WH):,t

})
,

with θx = {W ∈ RF×K+ ,H ∈ RK×T+ }.

23

EM Algorithm for Parameter Learning

Expectation-maximization (EM)-like algorithm:

• Approximate pθ(z1:T |x1:T)

• Estimate θx = {W ∈ RF×K+ ,H ∈ RK×T+ }

Three strategies for the intractable E-step:

• Markov Chain Monte Carlo

• Variational inference]: pθ(z1:T |x1:T) ≈ qφ(z1:T |x1:T)

• pθ(z1:T |x1:T) ≈ δ(z1:T − zMAP
1:T)

Posterior mean estimate of the speech signal with Wiener-like filtering (element-wise ops):

ŝt = Epθ(st|x1:T)[st] = Epθ(z1:T |x1:T)

[
vθs(z1:T)

vθs(z1:T) + (WH):,t

]
xt.

24

Pre-training and Parameter Learning

25

Results on the Wall Street Journal (WSJ) and VoiceBank (VB)

Method Superv. Test subset Train subset SI-SDR (dB) Train subset SI-SDR (dB)

Noisy mixture - WSJ0-QUT - −2.6 - −2.6

VAE-VEM ICASSP’20 UA WSJ0-QUT WSJ0 5.0

Proposed DKF-VEM UA WSJ0-QUT WSJ0 5.1

Proposed RVAE-VEM UA WSJ0-QUT WSJ0 5.8

Proposed SRNN-VEM UA WSJ0-QUT WSJ0 5.2

MetricGAN-U (full) ICASSP’22 UD WSJ0-QUT WSJ0-QUT N/A

MetricGAN-U (half) ICASSP’22 UD WSJ0-QUT WSJ0-QUT N/A

UMX* 2020 S WSJ0-QUT WSJ0-QUT 5.7

MetricGAN+* Interspeech’21 S WSJ0-QUT WSJ0-QUT 3.6

Noisy mixture -

VAE-VEM ICASSP’20 UA

Proposed DKF-VEM UA

Proposed RVAE-VEM UA

Proposed SRNN-VEM UA

NyTT EUSIPCO’21 UD

NyTT EUSIPCO’21 UD

MetricGAN-U (full) ICASSP’22 UD

MetricGAN-U (half) ICASSP’22 UD

UMX 2020 S

MetricGAN+ Interspeech’21 S 26

Results on the Wall Street Journal (WSJ) and VoiceBank (VB)

Method Superv. Test subset Train subset SI-SDR (dB) Train subset SI-SDR (dB)

Noisy mixture - WSJ0-QUT - −2.6 - −2.6

VAE-VEM ICASSP’20 UA WSJ0-QUT WSJ0 5.0

Proposed DKF-VEM UA WSJ0-QUT WSJ0 5.1

Proposed RVAE-VEM UA WSJ0-QUT WSJ0 5.8

Proposed SRNN-VEM UA WSJ0-QUT WSJ0 5.2

MetricGAN-U (full) ICASSP’22 UD WSJ0-QUT WSJ0-QUT N/A

MetricGAN-U (half) ICASSP’22 UD WSJ0-QUT WSJ0-QUT N/A

UMX* 2020 S WSJ0-QUT WSJ0-QUT 5.7

MetricGAN+* Interspeech’21 S WSJ0-QUT WSJ0-QUT 3.6

Noisy mixture - VB-DMD - 8.4 - 8.4

VAE-VEM ICASSP’20 UA VB-DMD VB 16.4

Proposed DKF-VEM UA VB-DMD VB 16.9

Proposed RVAE-VEM UA VB-DMD VB 17.1

Proposed SRNN-VEM UA VB-DMD VB 14.2

NyTT EUSIPCO’21 UD VB-DMD VB-DMD (Xtra) 17.7

NyTT EUSIPCO’21 UD VB-DMD VB-DMD 12.1

MetricGAN-U (full) ICASSP’22 UD VB-DMD VB-DMD 6.5

MetricGAN-U (half) ICASSP’22 UD VB-DMD VB-DMD 8.2

UMX 2020 S VB-DMD VB-DMD 14.0

MetricGAN+ Interspeech’21 S VB-DMD VB-DMD 8.5 26

Results on the Wall Street Journal (WSJ) and VoiceBank (VB)

Method Superv. Test subset Train subset SI-SDR (dB) Train subset SI-SDR (dB)

Noisy mixture - WSJ0-QUT - −2.6 - −2.6

VAE-VEM ICASSP’20 UA WSJ0-QUT WSJ0 5.0 VB 3.8

Proposed DKF-VEM UA WSJ0-QUT WSJ0 5.1 VB 3.5

Proposed RVAE-VEM UA WSJ0-QUT WSJ0 5.8 VB 4.3

Proposed SRNN-VEM UA WSJ0-QUT WSJ0 5.2 VB 4.6

MetricGAN-U (full) ICASSP’22 UD WSJ0-QUT WSJ0-QUT N/A VB-DMD -2.3

MetricGAN-U (half) ICASSP’22 UD WSJ0-QUT WSJ0-QUT N/A VB-DMD -1.6

UMX* 2020 S WSJ0-QUT WSJ0-QUT 5.7 VB-DMD 4.1

MetricGAN+* Interspeech’21 S WSJ0-QUT WSJ0-QUT 3.6 VB-DMD 1.8

Noisy mixture - VB-DMD - 8.4 - 8.4

VAE-VEM ICASSP’20 UA VB-DMD VB 16.4

Proposed DKF-VEM UA VB-DMD VB 16.9

Proposed RVAE-VEM UA VB-DMD VB 17.1

Proposed SRNN-VEM UA VB-DMD VB 14.2

NyTT EUSIPCO’21 UD VB-DMD VB-DMD (Xtra) 17.7

NyTT EUSIPCO’21 UD VB-DMD VB-DMD 12.1

MetricGAN-U (full) ICASSP’22 UD VB-DMD VB-DMD 6.5

MetricGAN-U (half) ICASSP’22 UD VB-DMD VB-DMD 8.2

UMX 2020 S VB-DMD VB-DMD 14.0

MetricGAN+ Interspeech’21 S VB-DMD VB-DMD 8.5 26

Results on the Wall Street Journal (WSJ) and VoiceBank (VB)

Method Superv. Test subset Train subset SI-SDR (dB) Train subset SI-SDR (dB)

Noisy mixture - WSJ0-QUT - −2.6 - −2.6

VAE-VEM ICASSP’20 UA WSJ0-QUT WSJ0 5.0 VB 3.8

Proposed DKF-VEM UA WSJ0-QUT WSJ0 5.1 VB 3.5

Proposed RVAE-VEM UA WSJ0-QUT WSJ0 5.8 VB 4.3

Proposed SRNN-VEM UA WSJ0-QUT WSJ0 5.2 VB 4.6

MetricGAN-U (full) ICASSP’22 UD WSJ0-QUT WSJ0-QUT N/A VB-DMD -2.3

MetricGAN-U (half) ICASSP’22 UD WSJ0-QUT WSJ0-QUT N/A VB-DMD -1.6

UMX* 2020 S WSJ0-QUT WSJ0-QUT 5.7 VB-DMD 4.1

MetricGAN+* Interspeech’21 S WSJ0-QUT WSJ0-QUT 3.6 VB-DMD 1.8

Noisy mixture - VB-DMD - 8.4 - 8.4

VAE-VEM ICASSP’20 UA VB-DMD VB 16.4 WSJ0 15.0

Proposed DKF-VEM UA VB-DMD VB 16.9 WSJ0 16.8

Proposed RVAE-VEM UA VB-DMD VB 17.1 WSJ0 textbf17.3

Proposed SRNN-VEM UA VB-DMD VB 14.2 WSJ0 16.8

NyTT EUSIPCO’21 UD VB-DMD VB-DMD (Xtra) 17.7 WSJ0-QUT N/A

NyTT EUSIPCO’21 UD VB-DMD VB-DMD 12.1 WSJ0-QUT N/A

MetricGAN-U (full) ICASSP’22 UD VB-DMD VB-DMD 6.5 WSJ0-QUT N/A

MetricGAN-U (half) ICASSP’22 UD VB-DMD VB-DMD 8.2 WSJ0-QUT N/A

UMX 2020 S VB-DMD VB-DMD 14.0 WSJ0+QUT 10.4

MetricGAN+ Interspeech’21 S VB-DMD VB-DMD 8.5 WSJ0+QUT 3.9 26

Conclusions & Resources

• Unsupervised speech enhancement methods can be more “flexible”.

• Useful for unsupervised sequential deep modeling.

• Can be combined with other probabilistic models (at training or test time).

• Sequential sampling is not very efficient.

Samples: https://team.inria.fr/robotlearn/unsup-se-dvae/

Code: https://github.com/XiaoyuBIE1994/DVAE_SE

Paper: https://arxiv.org/abs/2106.12271

DVAE’s can be used for other data/tasks: check

https://team.inria.fr/robotlearn/dvae/!

27

https://team.inria.fr/robotlearn/unsup-se-dvae/
https://github.com/XiaoyuBIE1994/DVAE_SE
https://arxiv.org/abs/2106.12271
https://team.inria.fr/robotlearn/dvae/

	Formalising Dynamical Variational Autoencoders
	Inference network: conditional independence and Markov blankets
	DVAE: general case, implementation and learning
	DVAEs for unsupervised speech enhancement

