
Unsupervised Probabilistic Learning with Latent Variables

Lecture 1: Exact Expectation-Maximisation Algorithms and Variational Autoencoders

Machine Learning Summer School Africa 2023, Cape Town

Xavier Alameda-Pineda

RobotLearn team, Inria at University Grenoble-Alpes,

Jean-Kuntzman CNRS Laboratory, Multidisciplinary Institute of Artificial Intelligence

Why unsupervised learning?

Imagine a system for {person tracking, speech denoising, body pose estimation, ...} in:

[Images under Creative Commons license]

We would like to avoid re-annotating for every new environment → Interest in unsupervised

learning (and/or unsupervised domain adaptation).

1

And probabilistic learning?

Probabilistic generative models aim to learn a (parametric) distribution pθ(x) that

approximates the complex data distribution pdata(x):

• Once learned, we can (ideally) sample new data.

• We can jointly learn them with other probabilistic models using maximum likelihood. 2

The Kullback-Leibler divergence and the ML formulation

The Kullback-Leilbler (KL) divergence between two distributions writes:

DKL(p(x)‖q(x)) = −Ep(x)

[
log

q(x)

p(x)

]
= −

∫
X
p(x) log

q(x)

p(x)
dx

{
≥ 0

6= DKL(q(x)‖p(x))

DKL(p(x)‖q(x)) = 0⇔ p(x) = q(x).

Given a training set {xi}Ni=1,xi ∼ pdata(x), ML minimizes the KL divergence:

θ∗ = argmin
θ

DKL

(
pdata(x) ‖ pθ(x)

)
= argmin

θ
− Epdata

[
log

pθ(x)

pdata(x)

]
= argmax

θ
Epdata

[
log pθ(x)

]
≈ argmax

θ

1

N

N∑
i=1

log pθ(xi)

3

The Kullback-Leibler divergence and the ML formulation

The Kullback-Leilbler (KL) divergence between two distributions writes:

DKL(p(x)‖q(x)) = −Ep(x)

[
log

q(x)

p(x)

]
= −

∫
X
p(x) log

q(x)

p(x)
dx

{
≥ 0

6= DKL(q(x)‖p(x))

DKL(p(x)‖q(x)) = 0⇔ p(x) = q(x).

Given a training set {xi}Ni=1,xi ∼ pdata(x), ML minimizes the KL divergence:

θ∗ = argmin
θ

DKL

(
pdata(x) ‖ pθ(x)

)
= argmin

θ
− Epdata

[
log

pθ(x)

pdata(x)

]
= argmax

θ
Epdata

[
log pθ(x)

]
≈ argmax

θ

1

N

N∑
i=1

log pθ(xi)

3

Interest of Latent Variables

• Speech enhancement: noisy speech (observation), clean speech (latent variable)

→ Get rid of noise heard together with speech.

• Person tracking: detections (observation), person positions (latent variable)

→ Track occluded persons, filter over time.

• Representation learning: raw data (observation), representation (latent variable)

→ Compute an optimal compact representation of the raw data.

Let z denote the latent variable:z ∼ pθ(z)

x|z ∼ pθ(x|z)
→ pθ(x) =

∫
pθ(x, z)dz =

∫
pθ(x|z)pθ(z)dz

New samples: Draw zk ∼ pθ(z), then draw a new sample xk ∼ pθ(x|zk).

Learning: How to estimate θ with the ML formulation?

4

Interest of Latent Variables

• Speech enhancement: noisy speech (observation), clean speech (latent variable)

→ Get rid of noise heard together with speech.

• Person tracking: detections (observation), person positions (latent variable)

→ Track occluded persons, filter over time.

• Representation learning: raw data (observation), representation (latent variable)

→ Compute an optimal compact representation of the raw data.

Let z denote the latent variable:z ∼ pθ(z)

x|z ∼ pθ(x|z)
→ pθ(x) =

∫
pθ(x, z)dz =

∫
pθ(x|z)pθ(z)dz

New samples: Draw zk ∼ pθ(z), then draw a new sample xk ∼ pθ(x|zk).

Learning: How to estimate θ with the ML formulation?

4

Interest of Latent Variables

• Speech enhancement: noisy speech (observation), clean speech (latent variable)

→ Get rid of noise heard together with speech.

• Person tracking: detections (observation), person positions (latent variable)

→ Track occluded persons, filter over time.

• Representation learning: raw data (observation), representation (latent variable)

→ Compute an optimal compact representation of the raw data.

Let z denote the latent variable:z ∼ pθ(z)

x|z ∼ pθ(x|z)
→ pθ(x) =

∫
pθ(x, z)dz =

∫
pθ(x|z)pθ(z)dz

New samples: Draw zk ∼ pθ(z), then draw a new sample xk ∼ pθ(x|zk).

Learning: How to estimate θ with the ML formulation?

4

Lecture Organisation

• Lecture 1: Probabilistic learning with latent variables, GMM and the exact EM algorithm,

probabilistic PCA and VAE.

• Lecture 2: The variational EM algoritm, mixtures of VAEs, application to audio-visual

speech enhancement.

• Lecture 3: Dynamical variational autoencoders, application to speech enhancement.

Connections to other lectures:

• Matthias Bauer: from PPCA/VAE to diffusion models.

• Steve Kroon: normalising flows and their use with VAEs.

I am fully available for discussing/chatting with y’all!

5

Lecture’s Outline

1 Learning with Latent Variables: the Gaussian Mixture Model

2 EM for GMM and beyond

3 Probabilistic PCA and VAE

4 VAE for audio modeling

5

Learning with Latent Variables: the

Gaussian Mixture Model

Simple example: clustering

Definition: find groups of data points without labels.

6

Very intuitive algorithm

Very simple algorithm (called the K-means algorithm):

1 Initialise randomly K centroids.

2 Assign each data point to the closes centroid.

3 Recompute centroids from the assignments.

4 Iterate the past two steps.

[Images from https://ai.plainenglish.io/]

7

https://ai.plainenglish.io/

Important points of K-means

The point-to-cluster assignment variable is unknown (latent, z), and must be infered with the

centroids (parameters of the model).

The assignment criterion is the Euclidean distance ⇒ groups are spherical and equally

populated a priori.

8

Generalising K-means: GMM

Defining the Gaussian mixture model (GMM)

• For each xn there is a latent variable zn taking values from 1 to K: zn ∈ {1, . . . ,K}.

• Its prior probability is defined as: p(zn = k) = πk ≥ 0, with
∑K

k=1 πk = 1.

• Given zn, the data point is modeled as a multivariate Gaussian:

p(xn|zn = k) = N (xn;µk,Σk)

Advantages:

1 Having π1, . . . , πK means that groups can be differently populated.

2 The shape of the groups is modeled by Σk.

3 The parameters are: θ = {πk,µk,Σk}Kk=1.

9

Generalising K-means: GMM

Defining the Gaussian mixture model (GMM)

• For each xn there is a latent variable zn taking values from 1 to K: zn ∈ {1, . . . ,K}.
• Its prior probability is defined as: p(zn = k) = πk ≥ 0, with

∑K
k=1 πk = 1.

• Given zn, the data point is modeled as a multivariate Gaussian:

p(xn|zn = k) = N (xn;µk,Σk)

Advantages:

1 Having π1, . . . , πK means that groups can be differently populated.

2 The shape of the groups is modeled by Σk.

3 The parameters are: θ = {πk,µk,Σk}Kk=1.

9

Generalising K-means: GMM

Defining the Gaussian mixture model (GMM)

• For each xn there is a latent variable zn taking values from 1 to K: zn ∈ {1, . . . ,K}.
• Its prior probability is defined as: p(zn = k) = πk ≥ 0, with

∑K
k=1 πk = 1.

• Given zn, the data point is modeled as a multivariate Gaussian:

p(xn|zn = k) = N (xn;µk,Σk)

Advantages:

1 Having π1, . . . , πK means that groups can be differently populated.

2 The shape of the groups is modeled by Σk.

3 The parameters are: θ = {πk,µk,Σk}Kk=1.

9

Maximum likelihood for GMM

Let’s compute p(xn)

p(xn) =

K∑
k=1

p(xn, zn = k) =

K∑
k=1

πkN (xn;µk,Σk).

The log-likelihood:

L(θ|X) =

N∑
n=1

log

K∑
k=1

πkN (xn;µk,Σk),

Computing directly ML by
∂L
∂πk

= 0,
∂L
∂µk

= 0 or
∂L
∂Σk

= 0 is very difficult.

10

EM for GMM and beyond

(Expected complete-data) log-likelihood

We have seen that log p(x) does not work well with derivatives. However, log p(x, z) does!

Problem: z is not observed, thus
∑

n log p(xn, zn) is a random variable.

Given an initial value of the parameters, θ0, let’s take the expectation w.r.t. the posterior

distribution p(z|x,θ0) (we will justify this choice later on):

Q(θ,θ0) =
∑
n

Ep(zn|xn;θ
0) log p(xn, zn;θ)

This function is called: expected complete-data log-likelihood, and is the main mathematical

object when working with EM algorithms.

11

(Expected complete-data) log-likelihood

We have seen that log p(x) does not work well with derivatives. However, log p(x, z) does!

Problem: z is not observed, thus
∑

n log p(xn, zn) is a random variable.

Given an initial value of the parameters, θ0, let’s take the expectation w.r.t. the posterior

distribution p(z|x,θ0) (we will justify this choice later on):

Q(θ,θ0) =
∑
n

Ep(zn|xn;θ
0) log p(xn, zn;θ)

This function is called: expected complete-data log-likelihood, and is the main mathematical

object when working with EM algorithms.

11

The EM algorithm for GMM

Given θ0, we use the expected complete-data log-likelihood Q. For iteration r = 1, . . . , R:

1 Expectation [E-step]:

Q(θ,θr−1) = Ep(Z|X;θr−1) log p(X,Z;θ)

2 Maximisation [M-step]:

θr = arg max
θ
Q(θ,θr−1)

(observations X = {xn}Nn=1, latent variables Z = {zn}Nn=1, parameters θ = {πk,µk,Σk}Kk=1)

We can look back to K-means:

1 Infer latent variables (assignment) given the parameters (centroids) [E-step].

2 Estimate the parameters (centroids) given the assignments [M-step].

12

The EM algorithm for GMM

Given θ0, we use the expected complete-data log-likelihood Q. For iteration r = 1, . . . , R:

1 Expectation [E-step]:

Q(θ,θr−1) = Ep(Z|X;θr−1) log p(X,Z;θ)

2 Maximisation [M-step]:

θr = arg max
θ
Q(θ,θr−1)

(observations X = {xn}Nn=1, latent variables Z = {zn}Nn=1, parameters θ = {πk,µk,Σk}Kk=1)

We can look back to K-means:

1 Infer latent variables (assignment) given the parameters (centroids) [E-step].

2 Estimate the parameters (centroids) given the assignments [M-step].

12

The EM algorithm for GMM (II)

E-step The posterior distribution writes:

p(z = k|xn;θ0) =
p(zn = k;θ0)p(xn|zn = k;θ0)∑
` p(zn = `;θ0)p(xn|zn = `;θ0)

=
π0kN (xn;µ0

k,Σ
0
k)∑

` π
0
`N (xn;µ0

` ,Σ
0
`)

= ηnk

The expected complete-data log-likelihood writes:

Q(θ,θ0) =

N∑
n=1

K∑
k=1

ηnk log πkN (xn;µk,Σk)

M-step The optimal value for µk writes:

µ∗k =
1∑N

n=1 ηnk

N∑
n=1

ηnkxn

13

The EM algorithm for GMM (II)

E-step The posterior distribution writes:

p(z = k|xn;θ0) =
p(zn = k;θ0)p(xn|zn = k;θ0)∑
` p(zn = `;θ0)p(xn|zn = `;θ0)

=
π0kN (xn;µ0

k,Σ
0
k)∑

` π
0
`N (xn;µ0

` ,Σ
0
`)

= ηnk

The expected complete-data log-likelihood writes:

Q(θ,θ0) =

N∑
n=1

K∑
k=1

ηnk log πkN (xn;µk,Σk)

M-step The optimal value for µk writes:

µ∗k =
1∑N

n=1 ηnk

N∑
n=1

ηnkxn

13

The EM algorithm for GMM (II)

E-step The posterior distribution writes:

p(z = k|xn;θ0) =
p(zn = k;θ0)p(xn|zn = k;θ0)∑
` p(zn = `;θ0)p(xn|zn = `;θ0)

=
π0kN (xn;µ0

k,Σ
0
k)∑

` π
0
`N (xn;µ0

` ,Σ
0
`)

= ηnk

The expected complete-data log-likelihood writes:

Q(θ,θ0) =

N∑
n=1

K∑
k=1

ηnk log πkN (xn;µk,Σk)

M-step The optimal value for µk writes:

µ∗k =
1∑N

n=1 ηnk

N∑
n=1

ηnkxn

13

But why does the EM work?

The main mathematical object in EM is Q (The expected complete-data log-likelihood).

What is the relationship with the log-likelihood? Let’s take any distribution of z, q(z):

log p(x) = Eq(z)

[
log p(x)

]
= Eq(z)

[
log p(x)

p(z|x)q(z)

p(z|x)q(z)

]
= Eq(z)

[
log

p(x)p(z|x)

q(z)

]
︸ ︷︷ ︸

M-step - Q

+DKL

(
q(z)

∥∥∥p(z|x)
)

︸ ︷︷ ︸
E-step - KL

14

But why does the EM work? (II)

log p(x;θ) = Eq(z)

[
log

p(x)p(z|x)

q(z)

]
︸ ︷︷ ︸

M-step - Q

+DKL

(
q(z)

∥∥∥p(z|x)
)

︸ ︷︷ ︸
E-step - KL

Another interpretation. Given θ0:

1 Set q(z) = p(z|x;θ0), minimise KL (thus maximize Q) w.r.t. q(z). The E-step reduces

the distance between log-likelihood and Q.

2 Maximize Q w.r.t. θ:
Q(θ,θ0) = Eq(z)

[
log

p(x, z;θ)

q(z)

]
.

The M-step pushes Q and therefore pushes the log-likelihood.

15

The Exact EM

log p(x;θ) = Eq(z)

[
log

p(x)p(z|x)

q(z)

]
︸ ︷︷ ︸

M-step - Q

+DKL

(
q(z)

∥∥∥p(z|x)
)

︸ ︷︷ ︸
E-step - KL

Given θ0:

1 Set q(z) = p(z|x;θ0), and compute Q(θ,θ0).

2 Maximize Q(θ,θ0) w.r.t. θ.

Several potential issues:

• The posterior distribution does not exist/is not computationally tractable.

• The expectation cannot be taken analytically.

• The maximization w.r.t. θ does not have close-form solutions.

16

The Exact EM

log p(x;θ) = Eq(z)

[
log

p(x)p(z|x)

q(z)

]
︸ ︷︷ ︸

M-step - Q

+DKL

(
q(z)

∥∥∥p(z|x)
)

︸ ︷︷ ︸
E-step - KL

Given θ0:

1 Set q(z) = p(z|x;θ0), and compute Q(θ,θ0).

2 Maximize Q(θ,θ0) w.r.t. θ.

Several potential issues:

• The posterior distribution does not exist/is not computationally tractable.

• The expectation cannot be taken analytically.

• The maximization w.r.t. θ does not have close-form solutions.

16

Probabilistic PCA and VAE

Probabilistic Principal Component Analysis (PCA)

Reduce the data dimensionality and extract a

compact representation (z) of each datum (x).

Probabilistic version of PCA (D � F):

p(z) = N (z; 0, I), z ∈ RD.

p(x|z) = N (x;Az + b, νI), x ∈ RF .

Posterior distribution ↔ data projection:

p(zn|xn;θ0) = N (zn;Wxn + c,Ω),

(W and Ω depend on θ0)

[Image from Wikimedia Commons]

17

Probabilistic Principal Component Analysis (PCA)

Reduce the data dimensionality and extract a

compact representation (z) of each datum (x).

Probabilistic version of PCA (D � F):

p(z) = N (z; 0, I), z ∈ RD.

p(x|z) = N (x;Az + b, νI), x ∈ RF .

Posterior distribution ↔ data projection:

p(zn|xn;θ0) = N (zn;Wxn + c,Ω),

(W and Ω depend on θ0)

[Image from Wikimedia Commons]

17

Comments on PPCA - Toward VAE

• It is possible to derive an exact EM algorithm → local convergence guaranteed.

• Can only model linear dependencies → limited expressivity.

Non-linear Gaussian model: pθ(x|z) = N
(
x;µθ(z),Σθ(z)

)
• µθ(.),Σθ(.): Non-linear functions implemented as deep nets

• Parameter estimation is challenging, but much more expressive

x

The non-linear Gaussian model can be optimised via the variational autoencoder (VAE).

18

Formalising the generative model (I)

How can we ensure that Σθ(z) is a covariance matrix?

• The covariance matrix is assumed to be diagonal:

Σθ(z) =

νθ,1(z) 0 · · · 0

0 νθ,2(z) · · · 0
...

...
. . .

...

0 0 · · · νθ,F (z)

Reduces complexity and memory, but also expressivity.

• We estimate the log-variance: ηθ,f (z) = log νθ,f (z):

Σθ(z) = diagf (exp (ηθ,f (z)))

The values of ηθ,f (z) can be positive or negative.

19

Formalising the generative model (II)

In terms of probabilistic dependencies, they are the same as PPCA:

z x

But we can also draw the non-lineariry:

z fθ(z) = [µθ(z),Σθ(z)] x

The dependency of the parameters w.r.t. z is deterministic.

Denoted by fθ(z) : RD → R2F , this non-linearity is implemented with a deep network, with

parameters (weights and biases) θ.

20

The posterior distribution

Since p(z|x;θ0) cannot be computed analytically, it needs to be approximated.

The idea is to find the best candidate within a family of distributions.

True Posterior Distribution

Approximate Posterior
Distribution

Distribution
Space

Approximating Family

21

Approximating the posterior distribution

The posterior distribution will be approximated with another feed-forward network

parametrised with φ:

p(z|x) ≈ q(z|x) = N (z; µ̃φ(x), Σ̃φ(x))

The approximating family is composed of all the distributions that can be expressed as above,

for a certain value of φ.

G = {gφ : RF → R2D;φ ∈ Φ},

with gφ(x) = [µ̃φ(x), Σ̃φ(x)].

22

Overall architecture

If we “chain” the posterior (encoder) and the generative (decoder) model:

x gφ z fθ x

m
e
a
n

v
a
ria

n
ce

samplex x

This is why we call these architectures variational autoencoders VAE.

But how do we optimise for the parameters θ and φ?
23

Learning - ELBO

If we recall the formulation for the EM:

log p(x) = Eq(z|x)

[
log

p(x, z)

q(z|x)

]
+DKL

(
q(z|x)

∥∥∥p(z|x)
)

Problem: the second term cannot be computed! But it’s positive:

log p(x;θ,φ) ≥ Eqφ(z|x)

[
log

p(x, z)

qφ(z|x)

]
log p(x;θ,φ) ≥ Eqφ(z|x)

[
log pθ(x|z)

]
︸ ︷︷ ︸

Reconstruction

−DKL

(
qφ(z|x)

∥∥∥p(z)
)

︸ ︷︷ ︸
Regularisation

This is known as Evidence Lower-BOund or ELBO: LELBO(θ,φ).

Be VERY careful with these expressions: They look alike, but they are NOT the same.

24

Learning - ELBO

If we recall the formulation for the EM:

log p(x) = Eq(z|x)

[
log

p(x, z)

q(z|x)

]
+DKL

(
q(z|x)

∥∥∥p(z|x)
)

Problem: the second term cannot be computed! But it’s positive:

log p(x;θ,φ) ≥ Eqφ(z|x)

[
log

p(x, z)

qφ(z|x)

]
log p(x;θ,φ) ≥ Eqφ(z|x)

[
log pθ(x|z)

]
︸ ︷︷ ︸

Reconstruction

−DKL

(
qφ(z|x)

∥∥∥p(z)
)

︸ ︷︷ ︸
Regularisation

This is known as Evidence Lower-BOund or ELBO: LELBO(θ,φ).

Be VERY careful with these expressions: They look alike, but they are NOT the same.

24

Learning - Sampling

But we still have one problem:

LELBO(θ,φ) = Eqφ(z|x)

{
log pθ(x|z)

}
︸ ︷︷ ︸

Reconstruction

−DKL

(
qφ(z|x)

∥∥∥p(z)
)

︸ ︷︷ ︸
Regularisation

To compute the “reconstruction” term we need to take the expectation w.r.t. qφ(z|x), but

recall that:

pθ(x|z) = N (x;µθ(z),Σθ(z)).

Due to the non-linearity, we cannot compute the reconstruction term in closed form

→ we sample R points ẑ(1), . . . , ẑ(R) from qφ:

LELBO(θ,φ) =
1

R

R∑
r=1

log pθ(x|ẑ(r))︸ ︷︷ ︸
Reconstruction

−DKL

(
qφ(z|x)

∥∥∥p(z)
)

︸ ︷︷ ︸
Regularisation

25

Learning - Gradient ascent?

Let’s go back to the architecture:

x gφ ẑ(r) fθ x

Since there is no closed-form solution for the parameters (due to the non-linearity), we will

learn the parameters using stochastic gradient ascent (to maximise the ELBO).

We assume that gφ and fθ are differentiable (we can compute the gradient).

The sampling operation (ẑ(r)) from qφ is NOT differentiable w.r.t. φ.

26

Learning - Reparametrisation trick

Instead of sampling directly from the posterior (ẑ(r) ∼ qφ = N (µ̃φ, Σ̃φ)) we sample as

follows:

z̄(r) = Σ̃
1/2
φ ε̄(r) + µ̃φ with ε̄(r) ∼ N (0, I)

ẑ(r) and z̄(r) follow the same distribution, BUT z̄(r) is differentiable w.r.t. φ!!!

This is called the reparametrisation trick and can be used with other distributions.

x gφ z̄(r) fθ x

N (0, I)

27

Learning - Reparametrisation trick

Instead of sampling directly from the posterior (ẑ(r) ∼ qφ = N (µ̃φ, Σ̃φ)) we sample as

follows:

z̄(r) = Σ̃
1/2
φ ε̄(r) + µ̃φ with ε̄(r) ∼ N (0, I)

ẑ(r) and z̄(r) follow the same distribution, BUT z̄(r) is differentiable w.r.t. φ!!!

This is called the reparametrisation trick and can be used with other distributions.

x gφ z̄(r) fθ x

N (0, I)

27

Learning - Reparametrisation trick (II)

[Image from Wikimedia Commons]

28

Training VAE

Implementation note: Most deep learning libraries implement stochastic gradient DESCENT

algorithms, but we would like to maximize the ELBO → we need to change the sign.

Posterior collapse: common phenomenon when the posterior qφ gets to close to the standard

prior. It can happen for various dimensions of z → the VAE stops learning.

• The KL term dominates the ELBO → weight the KL term with β < 1.

• The data can be reduced to less dimensions than D → decrease D.

29

Training VAE

Implementation note: Most deep learning libraries implement stochastic gradient DESCENT

algorithms, but we would like to maximize the ELBO → we need to change the sign.

Posterior collapse: common phenomenon when the posterior qφ gets to close to the standard

prior. It can happen for various dimensions of z → the VAE stops learning.

• The KL term dominates the ELBO → weight the KL term with β < 1.

• The data can be reduced to less dimensions than D → decrease D.

29

VAE: Summary

Generative model. Prior: p(z) = N (z; 0, I) and decoder: pθ(x|z) = N
(
x;µθ(z),Σθ(z)

)
.

Inference model (encoder): pθ(z|x) ≈ qφ(z|x) = N
(
z;µφ(x),Σφ(x)

)

m
e
a
n

v
a
ria

n
ce

samplex x

Training criterion (maximise the evidence lower bound):

LELBO(θ,φ) = log pθ(x|ẑ)︸ ︷︷ ︸
Reconstruction

−DKL

(
qφ(z|x)

∥∥∥p(z)
)

︸ ︷︷ ︸
Regularisation

where ẑ ∼ qφ is sampled using the reparametrisation trick.
30

VAE for audio modeling

Representing audio: time vs. frequency

Fourier domain decomposes the signal in frequencies:

[Image from https://dev.to/trekhleb/]

Problem: we have to choose either time or frequency.
31

https://dev.to/trekhleb/

The short-time Fourier transform (STFT)

STFT: segment the input signal, and apply DFT to each segment.

[Image from Mathworks]

32

Let’s see it!

• Sine frequency sweep (pure sine of increasing frequency).

• Leyenda (piano, harmonics).

• O mio babbino caro (opera, vibrato).

• Highway to hell (rock&roll, distortion).

33

Defining the VAE to model spectrograms

Each observation x will be an F -dimensional complex vector: x ∈ CF .

The low-dimensional latent variable will be real of dimension D: z ∈ RD.

The model:

• Prior: p(z) = N (z; 0, I).

• Decoder: pθ(x|z) = Nc(x; 0,Σθ(z)), complex Gaussian distribution, see next.

• Posterior: pθ(z|x) ≈ qφ(z|x) = N
(
z;µφ(x),Σφ(x)

)
We need to compute the reconstruction and the regularization terms.

Let’s recall that the covariance matrices Σθ(z) and Σφ(x) are diagonal log-variance matrices.

34

ELBO for spectrogram VAEs

The centered 1D complex-normal writes:

Nc(x; 0, ν) =
1

πν
exp

(
−|x|

2

ν

)
.

The 1D complex-normal for the f -th entry of x as a function of the log-var writes:

logNc(xf ; 0, exp ηθ,f (z)) = − log(π)− ηθ,f (z)−
|xf |2

exp(ηθ,f (z))
.

For a given sample ẑ, the reconstruction term writes:

log pθ(x|ẑ) =
∑
f

log pθ(xf |ẑ) = −F log(π)−
∑
f

(
ηθ,f (ẑ) +

|xf |2

exp(ηθ,f (ẑ))

)
.

35

ELBO for spectrogram VAEs (II)

The KL between two D-dimensional real Gaussian distributions writes:

Dkl(N0‖N1) =
1

2

(
Tr(Σ−11 Σ0)−D + (µ1 − µ0)

>Σ−11 (µ1 − µ0) + log
|Σ1|
|Σ0|

)
In our case: µ0 = µ̃φ(x), Σ0 = diagd (exp (η̃φ,d(x))), µ1 = 0 and Σ1 = I. Thus:

Dkl(qφ(z|x)‖p(z)) =
1

2

(∑
d

exp (η̃φ,d(x)) + |µ̃φ,d(x)|2 − η̃φ,d(x)

)
− D

2

Therefore the ELBO (w/o constant terms) writes:

LELBO(θ,φ) = −
∑
f

(
ηθ,f (ẑ) +

|xf |2

exp(ηθ,f (ẑ))

)
− 1

2

(∑
d

exp (η̃φ,d(x)) + |µ̃φ,d(x)|2 − η̃φ,d(x)

)
,

which is what we give to our optimizer.

36

ELBO for spectrogram VAEs (II)

The KL between two D-dimensional real Gaussian distributions writes:

Dkl(N0‖N1) =
1

2

(
Tr(Σ−11 Σ0)−D + (µ1 − µ0)

>Σ−11 (µ1 − µ0) + log
|Σ1|
|Σ0|

)
In our case: µ0 = µ̃φ(x), Σ0 = diagd (exp (η̃φ,d(x))), µ1 = 0 and Σ1 = I. Thus:

Dkl(qφ(z|x)‖p(z)) =
1

2

(∑
d

exp (η̃φ,d(x)) + |µ̃φ,d(x)|2 − η̃φ,d(x)

)
− D

2

Therefore the ELBO (w/o constant terms) writes:

LELBO(θ,φ) = −
∑
f

(
ηθ,f (ẑ) +

|xf |2

exp(ηθ,f (ẑ))

)
− 1

2

(∑
d

exp (η̃φ,d(x)) + |µ̃φ,d(x)|2 − η̃φ,d(x)

)
,

which is what we give to our optimizer.

36

ELBO for spectrogram VAEs (II)

The KL between two D-dimensional real Gaussian distributions writes:

Dkl(N0‖N1) =
1

2

(
Tr(Σ−11 Σ0)−D + (µ1 − µ0)

>Σ−11 (µ1 − µ0) + log
|Σ1|
|Σ0|

)
In our case: µ0 = µ̃φ(x), Σ0 = diagd (exp (η̃φ,d(x))), µ1 = 0 and Σ1 = I. Thus:

Dkl(qφ(z|x)‖p(z)) =
1

2

(∑
d

exp (η̃φ,d(x)) + |µ̃φ,d(x)|2 − η̃φ,d(x)

)
− D

2

Therefore the ELBO (w/o constant terms) writes:

LELBO(θ,φ) = −
∑
f

(
ηθ,f (ẑ) +

|xf |2

exp(ηθ,f (ẑ))

)
− 1

2

(∑
d

exp (η̃φ,d(x)) + |µ̃φ,d(x)|2 − η̃φ,d(x)

)
,

which is what we give to our optimizer. NO!!! We should give −LELBO(θ,φ).

36

Thank you for your attention

• Lecture 2: The variational EM algoritm, mixtures of VAEs, application to audio-visual

speech enhancement.

• Lecture 3: Dynamical variational autoencoders, application to speech enhancement.

References

1 D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” ICLR, 2014.

2 Y. Bando et al., “Statistical speech enhancement based on probabilistic integration of variational

autoencoder and non-negative matrix factorization,” in Proc. ICASSP, 2018, pp. 716–720

3 S. Leglaive et al., “A variance modeling framework based on variational autoencoders for speech

enhancement,” in Proc. MLSP, 2018.

4 C. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag Berlin, Heidelberg, 2006.

	Learning with Latent Variables: the Gaussian Mixture Model
	EM for GMM and beyond
	Probabilistic PCA and VAE
	VAE for audio modeling

