Unsupervised Probabilistic Learning with Latent Variables

Lecture 1: Exact Expectation-Maximisation Algorithms and Variational Autoencoders

Machine Learning Summer School Africa 2023, Cape Town

Xavier Alameda-Pineda

RobotLearn team, Inria at University Grenoble-Alpes, Jean-Kuntzman CNRS Laboratory, Multidisciplinary Institute of Artificial Intelligence

Imagine a system for {person tracking, speech denoising, body pose estimation, \ldots } in:

[Images under Creative Commons license]

We would like to avoid re-annotating for every new environment \rightarrow Interest in unsupervised learning (and/or unsupervised domain adaptation).

And probabilistic learning?

Probabilistic generative models aim to learn a (parametric) distribution $p_{\theta}(x)$ that approximates the complex data distribution $p_{data}(x)$:

- Once learned, we can (ideally) sample new data.
- We can jointly learn them with other probabilistic models using *maximum likelihood*.

The Kullback-Leibler divergence and the ML formulation

The Kullback-Leilbler (KL) divergence between two distributions writes:

$$D_{\mathsf{KL}}(p(\boldsymbol{x}) \| q(\boldsymbol{x})) = -\mathbb{E}_{p(\boldsymbol{x})} \left[\log \frac{q(\boldsymbol{x})}{p(\boldsymbol{x})} \right] = -\int_{\mathcal{X}} p(\boldsymbol{x}) \log \frac{q(\boldsymbol{x})}{p(\boldsymbol{x})} \mathrm{d}\boldsymbol{x} \left\{ \begin{array}{l} \geq 0 \\ \neq D_{\mathsf{KL}}(q(\boldsymbol{x}) \| p(\boldsymbol{x})) \\ \mathcal{D}_{\mathsf{KL}}(p(\boldsymbol{x}) \| q(\boldsymbol{x})) = 0 \Leftrightarrow p(\boldsymbol{x}) = q(\boldsymbol{x}). \end{array} \right.$$

The Kullback-Leibler divergence and the ML formulation

The Kullback-Leilbler (KL) divergence between two distributions writes:

$$D_{\mathsf{KL}}(p(\boldsymbol{x}) \| q(\boldsymbol{x})) = -\mathbb{E}_{p(\boldsymbol{x})} \left[\log \frac{q(\boldsymbol{x})}{p(\boldsymbol{x})} \right] = -\int_{\mathcal{X}} p(\boldsymbol{x}) \log \frac{q(\boldsymbol{x})}{p(\boldsymbol{x})} \mathrm{d}\boldsymbol{x} \begin{cases} \geq 0\\ \neq D_{\mathsf{KL}}(q(\boldsymbol{x}) \| p(\boldsymbol{x})) \end{cases}$$
$$\mathcal{D}_{\mathsf{KL}}(p(\boldsymbol{x}) \| q(\boldsymbol{x})) = 0 \Leftrightarrow p(\boldsymbol{x}) = q(\boldsymbol{x}).$$

Given a training set $\{x_i\}_{i=1}^N, x_i \sim p_{\scriptscriptstyle \mathsf{data}}(x)$, ML minimizes the KL divergence:

$$\begin{aligned} \boldsymbol{\theta}^* &= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \quad D_{\mathsf{KL}} \left(p_{\mathsf{data}}(\boldsymbol{x}) \parallel p_{\boldsymbol{\theta}}(\boldsymbol{x}) \right) = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \quad - \mathbb{E}_{p_{\mathsf{data}}} \left[\log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x})}{p_{\mathsf{data}}(\boldsymbol{x})} \right] \\ &= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \quad \mathbb{E}_{p_{\mathsf{data}}} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}) \right] \approx \left[\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \quad \frac{1}{N} \sum_{i=1}^{N} \log p_{\boldsymbol{\theta}}(\boldsymbol{x}_i) \right] \end{aligned}$$

Interest of Latent Variables

- Speech enhancement: noisy speech (observation), clean speech (latent variable)
 → Get rid of noise heard together with speech.
- Person tracking: detections (observation), person positions (latent variable)
 → Track occluded persons, filter over time.
- Representation learning: raw data (observation), representation (latent variable)
 - \rightarrow Compute an optimal compact representation of the raw data.

Interest of Latent Variables

- Speech enhancement: noisy speech (observation), clean speech (latent variable)
 → Get rid of noise heard together with speech.
- Person tracking: detections (observation), person positions (latent variable)
 → Track occluded persons, filter over time.
- Representation learning: raw data (observation), representation (latent variable) \rightarrow Compute an optimal compact representation of the raw data.

Let z denote the latent variable:

$$\begin{cases} \boldsymbol{z} \sim p_{\boldsymbol{\theta}}(\boldsymbol{z}) \\ \boldsymbol{x} | \boldsymbol{z} \sim p_{\boldsymbol{\theta}}(\boldsymbol{x} | \boldsymbol{z}) \end{cases} \rightarrow p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \int p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z}) \mathrm{d}\boldsymbol{z} = \int p_{\boldsymbol{\theta}}(\boldsymbol{x} | \boldsymbol{z}) p_{\boldsymbol{\theta}}(\boldsymbol{z}) \mathrm{d}\boldsymbol{z}$$

New samples: Draw $z_k \sim p_{\theta}(z)$, then draw a new sample $x_k \sim p_{\theta}(x|z_k)$.

Interest of Latent Variables

- Speech enhancement: noisy speech (observation), clean speech (latent variable)
 → Get rid of noise heard together with speech.
- Person tracking: detections (observation), person positions (latent variable)
 → Track occluded persons, filter over time.
- Representation learning: raw data (observation), representation (latent variable) \rightarrow Compute an optimal compact representation of the raw data.

Let z denote the latent variable:

$$\begin{cases} \boldsymbol{z} \sim p_{\boldsymbol{\theta}}(\boldsymbol{z}) \\ \boldsymbol{x} | \boldsymbol{z} \sim p_{\boldsymbol{\theta}}(\boldsymbol{x} | \boldsymbol{z}) \end{cases} \rightarrow p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \int p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z}) \mathrm{d}\boldsymbol{z} = \int p_{\boldsymbol{\theta}}(\boldsymbol{x} | \boldsymbol{z}) p_{\boldsymbol{\theta}}(\boldsymbol{z}) \mathrm{d}\boldsymbol{z}$$

New samples: Draw $z_k \sim p_{\theta}(z)$, then draw a new sample $x_k \sim p_{\theta}(x|z_k)$.

Learning: How to estimate θ with the ML formulation?

- Lecture 1: Probabilistic learning with latent variables, GMM and the exact EM algorithm, probabilistic PCA and VAE.
- Lecture 2: The variational EM algoritm, mixtures of VAEs, application to audio-visual speech enhancement.
- Lecture 3: Dynamical variational autoencoders, application to speech enhancement.

Connections to other lectures:

- Matthias Bauer: from PPCA/VAE to diffusion models.
- Steve Kroon: normalising flows and their use with VAEs.

I am fully available for discussing/chatting with y'all!

1 Learning with Latent Variables: the Gaussian Mixture Model

- EM for GMM and beyond
- Probabilistic PCA and VAE
- 4 VAE for audio modeling

Learning with Latent Variables: the Gaussian Mixture Model

Simple example: clustering

Definition: find groups of data points without labels.

Very intuitive algorithm

Very simple algorithm (called the *K*-means algorithm):

- Initialise randomly K centroids.
- Assign each data point to the closes centroid.
- Secompute centroids from the assignments.
- Iterate the past two steps.

[[]Images from https://ai.plainenglish.io/]

Important points of K-means

The point-to-cluster assignment variable is unknown (latent, z), and must be inferred with the centroids (parameters of the model).

The assignment criterion is the Euclidean distance \Rightarrow groups are spherical and equally populated a priori.

Generalising *K*-means: GMM

Defining the Gaussian mixture model (GMM)

• For each x_n there is a latent variable z_n taking values from 1 to K: $z_n \in \{1, \ldots, K\}$.

Generalising *K*-means: GMM

Defining the Gaussian mixture model (GMM)

- For each x_n there is a latent variable z_n taking values from 1 to K: $z_n \in \{1, \dots, K\}$.
- Its prior probability is defined as: $p(\boldsymbol{z}_n = k) = \pi_k \ge 0$, with $\sum_{k=1}^{K} \pi_k = 1$.

Generalising *K*-means: GMM

Defining the Gaussian mixture model (GMM)

- For each x_n there is a latent variable z_n taking values from 1 to K: $z_n \in \{1, \dots, K\}$.
- Its prior probability is defined as: $p(\boldsymbol{z}_n = k) = \pi_k \ge 0$, with $\sum_{k=1}^{K} \pi_k = 1$.
- Given z_n , the data point is modeled as a multivariate Gaussian:

$$p(\boldsymbol{x}_n | \boldsymbol{z}_n = k) = \mathcal{N}(\boldsymbol{x}_n; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Advantages:

- Having π_1, \ldots, π_K means that groups can be differently populated.
- 2 The shape of the groups is modeled by Σ_k .
- The parameters are: $\boldsymbol{\theta} = \{\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$.

Let's compute $p(\boldsymbol{x}_n)$

$$p(\boldsymbol{x}_n) = \sum_{k=1}^{K} p(\boldsymbol{x}_n, \boldsymbol{z}_n = k) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}_n; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

The log-likelihood:

$$\mathcal{L}(oldsymbol{ heta}|oldsymbol{X}) = \sum_{n=1}^N \log \sum_{k=1}^K \pi_k \mathcal{N}(oldsymbol{x}_n;oldsymbol{\mu}_k,oldsymbol{\Sigma}_k),$$

Computing directly ML by $\frac{\partial \mathcal{L}}{\partial \pi_k} = 0$, $\frac{\partial \mathcal{L}}{\partial \mu_k} = 0$ or $\frac{\partial \mathcal{L}}{\partial \Sigma_k} = 0$ is very difficult.

EM for GMM and beyond

We have seen that $\log p(\boldsymbol{x})$ does not work well with derivatives. However, $\log p(\boldsymbol{x}, \boldsymbol{z})$ does!

Problem: \boldsymbol{z} is not observed, thus $\sum_n \log p(\boldsymbol{x}_n, \boldsymbol{z}_n)$ is a random variable.

We have seen that $\log p(x)$ does not work well with derivatives. However, $\log p(x, z)$ does!

Problem: \boldsymbol{z} is not observed, thus $\sum_n \log p(\boldsymbol{x}_n, \boldsymbol{z}_n)$ is a random variable.

Given an initial value of the parameters, θ^0 , let's take the expectation w.r.t. the posterior distribution $p(\boldsymbol{z}|\boldsymbol{x}, \theta^0)$ (we will justify this choice later on):

$$\mathcal{Q}(oldsymbol{ heta},oldsymbol{ heta}^0) = \sum_n \mathbb{E}_{p(oldsymbol{z}_n | oldsymbol{x}_n;oldsymbol{ heta}^0)} \log p(oldsymbol{x}_n,oldsymbol{z}_n;oldsymbol{ heta})$$

This function is called: *expected complete-data log-likelihood*, and is the main mathematical object when working with EM algorithms.

The EM algorithm for GMM

Given θ^0 , we use the expected complete-data log-likelihood Q. For iteration $r = 1, \ldots, R$:

Expectation [E-step]:

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{r-1}) = \mathbb{E}_{p(\boldsymbol{Z}|\boldsymbol{X}; \boldsymbol{\theta}^{r-1})} \log p(\boldsymbol{X}, \boldsymbol{Z}; \boldsymbol{\theta})$$

Maximisation [M-step]:

$$\boldsymbol{\theta}^r = \arg \max_{\boldsymbol{\theta}} \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{r-1})$$

(observations $X = \{x_n\}_{n=1}^N$, latent variables $Z = \{z_n\}_{n=1}^N$, parameters $\theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$)

The EM algorithm for GMM

Given θ^0 , we use the expected complete-data log-likelihood Q. For iteration $r = 1, \ldots, R$:

Expectation [E-step]:

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{r-1}) = \mathbb{E}_{p(\boldsymbol{Z}|\boldsymbol{X}; \boldsymbol{\theta}^{r-1})} \log p(\boldsymbol{X}, \boldsymbol{Z}; \boldsymbol{\theta})$$

Maximisation [M-step]:

$$\boldsymbol{\theta}^r = \arg \max_{\boldsymbol{\theta}} \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{r-1})$$

(observations $m{X} = \{m{x}_n\}_{n=1}^N$, latent variables $m{Z} = \{m{z}_n\}_{n=1}^N$, parameters $m{ heta} = \{\pi_k, m{\mu}_k, m{\Sigma}_k\}_{k=1}^K$)

We can look back to K-means:

- Infer latent variables (assignment) given the parameters (centroids) [E-step].
- Stimate the parameters (centroids) given the assignments [M-step].

The EM algorithm for GMM (II)

E-step The posterior distribution writes:

$$p(\boldsymbol{z}=k|\boldsymbol{x}_n;\boldsymbol{\theta}^0) = \frac{p(\boldsymbol{z}_n=k;\boldsymbol{\theta}^0)p(\boldsymbol{x}_n|\boldsymbol{z}_n=k;\boldsymbol{\theta}^0)}{\sum_{\ell} p(\boldsymbol{z}_n=\ell;\boldsymbol{\theta}^0)p(\boldsymbol{x}_n|\boldsymbol{z}_n=\ell;\boldsymbol{\theta}^0)} = \frac{\pi_k^0 \mathcal{N}(\boldsymbol{x}_n;\boldsymbol{\mu}_k^0,\boldsymbol{\Sigma}_k^0)}{\sum_{\ell} \pi_\ell^0 \mathcal{N}(\boldsymbol{x}_n;\boldsymbol{\mu}_\ell^0,\boldsymbol{\Sigma}_\ell^0)} = \eta_{nk}$$

The EM algorithm for GMM (II)

E-step The posterior distribution writes:

$$p(\boldsymbol{z}=k|\boldsymbol{x}_n;\boldsymbol{\theta}^0) = \frac{p(\boldsymbol{z}_n=k;\boldsymbol{\theta}^0)p(\boldsymbol{x}_n|\boldsymbol{z}_n=k;\boldsymbol{\theta}^0)}{\sum_{\ell} p(\boldsymbol{z}_n=\ell;\boldsymbol{\theta}^0)p(\boldsymbol{x}_n|\boldsymbol{z}_n=\ell;\boldsymbol{\theta}^0)} = \frac{\pi_k^0 \mathcal{N}(\boldsymbol{x}_n;\boldsymbol{\mu}_k^0,\boldsymbol{\Sigma}_k^0)}{\sum_{\ell} \pi_\ell^0 \mathcal{N}(\boldsymbol{x}_n;\boldsymbol{\mu}_\ell^0,\boldsymbol{\Sigma}_\ell^0)} = \eta_{nk}$$

The expected complete-data log-likelihood writes:

$$\mathcal{Q}(\boldsymbol{ heta}, \boldsymbol{ heta}^0) = \sum_{n=1}^{N} \sum_{k=1}^{K} \eta_{nk} \log \pi_k \mathcal{N}(\boldsymbol{x}_n; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

The EM algorithm for GMM (II)

E-step The posterior distribution writes:

$$p(\boldsymbol{z}=k|\boldsymbol{x}_n;\boldsymbol{\theta}^0) = \frac{p(\boldsymbol{z}_n=k;\boldsymbol{\theta}^0)p(\boldsymbol{x}_n|\boldsymbol{z}_n=k;\boldsymbol{\theta}^0)}{\sum_{\ell} p(\boldsymbol{z}_n=\ell;\boldsymbol{\theta}^0)p(\boldsymbol{x}_n|\boldsymbol{z}_n=\ell;\boldsymbol{\theta}^0)} = \frac{\pi_k^0 \mathcal{N}(\boldsymbol{x}_n;\boldsymbol{\mu}_k^0,\boldsymbol{\Sigma}_k^0)}{\sum_{\ell} \pi_\ell^0 \mathcal{N}(\boldsymbol{x}_n;\boldsymbol{\mu}_\ell^0,\boldsymbol{\Sigma}_\ell^0)} = \eta_{nk}$$

The expected complete-data log-likelihood writes:

$$\mathcal{Q}(oldsymbol{ heta},oldsymbol{ heta}^0) = \sum_{n=1}^N \sum_{k=1}^K \eta_{nk} \log \pi_k \mathcal{N}(oldsymbol{x}_n;oldsymbol{\mu}_k,oldsymbol{\Sigma}_k)$$

M-step The optimal value for μ_k writes:

$$oldsymbol{\mu}_k^* = rac{1}{\sum_{n=1}^N \eta_{nk}} \sum_{n=1}^N \eta_{nk} oldsymbol{x}_n$$

The main mathematical object in EM is ${\cal Q}$ (The expected complete-data log-likelihood).

What is the relationship with the log-likelihood? Let's take any distribution of z, q(z):

$$\log p(\boldsymbol{x}) = \mathbb{E}_{q(\boldsymbol{z})} \left[\log p(\boldsymbol{x}) \right]$$
$$= \mathbb{E}_{q(\boldsymbol{z})} \left[\log p(\boldsymbol{x}) \frac{p(\boldsymbol{z}|\boldsymbol{x})q(\boldsymbol{z})}{p(\boldsymbol{z}|\boldsymbol{x})q(\boldsymbol{z})} \right]$$
$$= \underbrace{\mathbb{E}_{q(\boldsymbol{z})} \left[\log \frac{p(\boldsymbol{x})p(\boldsymbol{z}|\boldsymbol{x})}{q(\boldsymbol{z})} \right]}_{\text{M-step - }\mathcal{Q}} + \underbrace{D_{\text{KL}} \left(q(\boldsymbol{z}) \left\| p(\boldsymbol{z}|\boldsymbol{x}) \right)}_{\text{E-step - KL}} \right]$$

But why does the EM work? (II)

$$\log p(\boldsymbol{x}; \boldsymbol{\theta}) = \underbrace{\mathbb{E}_{q(\boldsymbol{z})} \left[\log \frac{p(\boldsymbol{x})p(\boldsymbol{z}|\boldsymbol{x})}{q(\boldsymbol{z})} \right]}_{\text{M-step - }\mathcal{Q}} + \underbrace{D_{\text{KL}} \left(q(\boldsymbol{z}) \left\| p(\boldsymbol{z}|\boldsymbol{x}) \right)}_{\text{E-step - }\text{KL}} \right)$$

Another interpretation. Given θ^0 :

- Set $q(z) = p(z|x; \theta^0)$, minimise KL (thus maximize Q) w.r.t. q(z). The E-step reduces the distance between log-likelihood and Q.
- $\textbf{ aximize } \mathcal{Q} \text{ w.r.t. } \boldsymbol{\theta} \text{:} \qquad \qquad \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^0) = \mathbf{E}_{q(\boldsymbol{z})} \Big[\log \frac{p(\boldsymbol{x}, \boldsymbol{z}; \boldsymbol{\theta})}{q(\boldsymbol{z})} \Big].$

The M-step pushes ${\mathcal Q}$ and therefore pushes the log-likelihood.

The Exact EM

$$\log p(\boldsymbol{x}; \boldsymbol{\theta}) = \underbrace{\mathbb{E}_{q(\boldsymbol{z})} \Big[\log \frac{p(\boldsymbol{x})p(\boldsymbol{z}|\boldsymbol{x})}{q(\boldsymbol{z})} \Big]}_{\text{M-step - }\mathcal{Q}} + \underbrace{D_{\text{KL}} \Big(q(\boldsymbol{z}) \Big\| p(\boldsymbol{z}|\boldsymbol{x}) \Big)}_{\text{E-step - KL}}$$

Given θ^0 :

- Set $q(\boldsymbol{z}) = p(\boldsymbol{z}|\boldsymbol{x}; \boldsymbol{\theta}^0)$, and compute $\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^0)$.
- **2** Maximize $Q(\theta, \theta^0)$ w.r.t. θ .

The Exact EM

$$\log p(\boldsymbol{x}; \boldsymbol{\theta}) = \underbrace{\mathbb{E}_{q(\boldsymbol{z})} \Big[\log \frac{p(\boldsymbol{x})p(\boldsymbol{z}|\boldsymbol{x})}{q(\boldsymbol{z})} \Big]}_{\text{M-step - }\mathcal{Q}} + \underbrace{D_{\text{KL}} \Big(q(\boldsymbol{z}) \Big\| p(\boldsymbol{z}|\boldsymbol{x}) \Big)}_{\text{E-step - KL}}$$

Given θ^0 :

- Set $q(\boldsymbol{z}) = p(\boldsymbol{z}|\boldsymbol{x}; \boldsymbol{\theta}^0)$, and compute $\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^0)$.
- **2** Maximize $Q(\theta, \theta^0)$ w.r.t. θ .

Several potential issues:

- The posterior distribution does not exist/is not computationally tractable.
- The expectation cannot be taken analytically.
- The maximization w.r.t. heta does not have close-form solutions.

Probabilistic PCA and VAE

Reduce the data dimensionality and extract a compact representation (z) of each datum (x).

Probabilistic version of PCA ($D \ll F$):

$$p(\boldsymbol{z}) = \mathcal{N}(\boldsymbol{z}; \boldsymbol{0}, \boldsymbol{I}), \quad \boldsymbol{z} \in \mathbb{R}^{D}.$$

 $p(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}; \boldsymbol{A}\boldsymbol{z} + \boldsymbol{b}, \nu \boldsymbol{I}), \quad \boldsymbol{x} \in \mathbb{R}^{F}.$

Reduce the data dimensionality and extract a compact representation (z) of each datum (x).

Probabilistic version of PCA ($D \ll F$):

$$p(oldsymbol{z}) = \mathcal{N}(oldsymbol{z}; oldsymbol{0}, oldsymbol{I}), \quad oldsymbol{z} \in \mathbb{R}^{D}.$$
 $p(oldsymbol{x} | oldsymbol{z}) = \mathcal{N}(oldsymbol{x}; oldsymbol{A} oldsymbol{z} + oldsymbol{b},
u oldsymbol{I}), \quad oldsymbol{x} \in \mathbb{R}^{F}.$

Posterior distribution \leftrightarrow data projection:

$$p(\boldsymbol{z}_n | \boldsymbol{x}_n; \boldsymbol{\theta}^0) = \mathcal{N}(\boldsymbol{z}_n; \boldsymbol{W} \boldsymbol{x}_n + \boldsymbol{c}, \boldsymbol{\Omega}),$$

($oldsymbol{W}$ and $oldsymbol{\Omega}$ depend on $oldsymbol{ heta}^0$)

[Image from Wikimedia Commons]

Comments on PPCA - Toward VAE

- It is possible to derive an exact EM algorithm ightarrow local convergence guaranteed.
- $\bullet\,$ Can only model linear dependencies \rightarrow limited expressivity.

Non-linear Gaussian model: $p_{\theta}(x|z) = \mathcal{N}(x; \mu_{\theta}(z), \Sigma_{\theta}(z))$

- $\mu_{ heta}(.), \Sigma_{ heta}(.)$: Non-linear functions implemented as deep nets
- Parameter estimation is challenging, but much more expressive

The non-linear Gaussian model can be optimised via the variational autoencoder (VAE).

Formalising the generative model (I)

How can we ensure that $\Sigma_{ heta}(z)$ is a covariance matrix?

• The covariance matrix is assumed to be diagonal:

$$oldsymbol{\Sigma}_{oldsymbol{ heta}}(oldsymbol{z}) = \left(egin{array}{ccccc}
u_{oldsymbol{ heta},1}(oldsymbol{z}) & 0 & \cdots & 0 \ 0 &
u_{oldsymbol{ heta},2}(oldsymbol{z}) & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots &
u_{oldsymbol{ heta},F}(oldsymbol{z}) \end{array}
ight)$$

Reduces complexity and memory, but also expressivity.

• We estimate the log-variance: $\eta_{\theta,f}(z) = \log \nu_{\theta,f}(z)$:

$$\boldsymbol{\Sigma}_{\boldsymbol{\theta}}(\boldsymbol{z}) = \operatorname{diag}_{f}\left(\exp\left(\eta_{\boldsymbol{\theta},f}(\boldsymbol{z})\right)\right)$$

The values of $\eta_{\theta,f}(z)$ can be positive or negative.

Formalising the generative model (II)

In terms of probabilistic dependencies, they are the same as PPCA:

But we can also draw the non-lineariry:

$$egin{array}{c} egin{array}{c} egin{array}$$

The dependency of the parameters w.r.t. z is deterministic.

Denoted by $f_{\theta}(z) : \mathbb{R}^D \to \mathbb{R}^{2F}$, this non-linearity is implemented with a deep network, with parameters (weights and biases) θ .

Since $p(\boldsymbol{z}|\boldsymbol{x};\boldsymbol{\theta}^0)$ cannot be computed analytically, it needs to be approximated.

The idea is to find the best candidate within a family of distributions.

The posterior distribution will be approximated with **another** feed-forward network parametrised with ϕ :

$$p(\boldsymbol{z}|\boldsymbol{x}) pprox q(\boldsymbol{z}|\boldsymbol{x}) = \mathcal{N}(\boldsymbol{z}; \tilde{\boldsymbol{\mu}}_{\boldsymbol{\phi}}(\boldsymbol{x}), \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{\phi}}(\boldsymbol{x}))$$

The approximating family is composed of all the distributions that can be expressed as above, for a certain value of ϕ .

$$\mathcal{G} = \{ \boldsymbol{g}_{\boldsymbol{\phi}} : \mathbb{R}^F o \mathbb{R}^{2D}; \boldsymbol{\phi} \in \boldsymbol{\Phi} \},$$

with $oldsymbol{g}_{oldsymbol{\phi}}(oldsymbol{x}) = [ilde{oldsymbol{\mu}}_{oldsymbol{\phi}}(oldsymbol{x}), ilde{m{\Sigma}}_{oldsymbol{\phi}}(oldsymbol{x})].$

Overall architecture

If we "chain" the posterior (encoder) and the generative (decoder) model:

This is why we call these architectures variational autoencoders VAE.

But how do we optimise for the parameters θ and ϕ ?

Learning - ELBO

If we recall the formulation for the EM:

$$\log p(\boldsymbol{x}) = \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})} \Big[\log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z}|\boldsymbol{x})} \Big] + D_{\mathsf{KL}} \Big(q(\boldsymbol{z}|\boldsymbol{x}) \Big\| p(\boldsymbol{z}|\boldsymbol{x}) \Big)$$

Learning - ELBO

If we recall the formulation for the EM:

$$\log p(\boldsymbol{x}) = \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})} \Big[\log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z}|\boldsymbol{x})} \Big] + D_{\mathsf{KL}} \Big(q(\boldsymbol{z}|\boldsymbol{x}) \Big\| p(\boldsymbol{z}|\boldsymbol{x}) \Big)$$

Problem: the second term cannot be computed! But it's positive:

$$\log p(\boldsymbol{x}; \boldsymbol{\theta}, \boldsymbol{\phi}) \geq \mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})} \right]$$
$$\log p(\boldsymbol{x}; \boldsymbol{\theta}, \boldsymbol{\phi}) \geq \underbrace{\mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z}) \right]}_{\text{Reconstruction}} - \underbrace{D_{\mathsf{KL}} \left(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) \left\| p(\boldsymbol{z}) \right)}_{\text{Regularisation}} \right]$$

This is known as **Evidence Lower-BOund or ELBO**: $\mathcal{L}_{ELBO}(\theta, \phi)$.

Be VERY careful with these expressions: They look alike, but they are NOT the same.

Learning - Sampling

But we still have one problem:

$$\mathcal{L}_{\mathsf{ELBO}}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \underbrace{\mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})} \Big\{ \log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z}) \Big\}}_{\mathsf{Reconstruction}} - \underbrace{D_{\mathsf{KL}} \Big(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) \Big\| p(\boldsymbol{z}) \Big)}_{\mathsf{Regularisation}}$$

To compute the "reconstruction" term we need to take the expectation w.r.t. $q_{\phi}(z|x)$, but recall that:

$$p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}_{\theta}(\boldsymbol{z}), \boldsymbol{\Sigma}_{\theta}(\boldsymbol{z})).$$

Due to the non-linearity, we cannot compute the reconstruction term in closed form \rightarrow we sample R points $\hat{z}^{(1)}, \ldots, \hat{z}^{(R)}$ from q_{ϕ} :

$$\mathcal{L}_{\mathsf{ELBO}}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \underbrace{\frac{1}{R} \sum_{r=1}^{R} \log p_{\boldsymbol{\theta}}(\boldsymbol{x} | \hat{\boldsymbol{z}}^{(r)})}_{\mathsf{Reconstruction}} - \underbrace{D_{\mathsf{KL}} \Big(q_{\boldsymbol{\phi}}(\boldsymbol{z} | \boldsymbol{x}) \Big\| p(\boldsymbol{z}) \Big)}_{\mathsf{Regularisation}}$$

Let's go back to the architecture:

Since there is no closed-form solution for the parameters (due to the non-linearity), we will learn the parameters using stochastic gradient ascent (to maximise the ELBO).

We assume that g_{ϕ} and f_{θ} are differentiable (we can compute the gradient).

The sampling operation $(\hat{z}^{(r)})$ from q_{ϕ} is **NOT** differentiable w.r.t. ϕ .

Learning - Reparametrisation trick

Instead of sampling directly from the posterior $(\hat{z}^{(r)} \sim q_{\phi} = \mathcal{N}(\tilde{\mu}_{\phi}, \tilde{\Sigma}_{\phi}))$ we sample as follows:

$$ar{m{z}}^{(r)} = ilde{\Sigma}_{m{\phi}}^{1/2}ar{m{\epsilon}}^{(r)} + ilde{m{\mu}}_{m{\phi}} \hspace{0.5cm} ext{with} \hspace{0.5cm} ar{m{\epsilon}}^{(r)} \sim \mathcal{N}(m{0},m{I})$$

 $\hat{m{z}}^{(r)}$ and $ar{m{z}}^{(r)}$ follow the same distribution, BUT $ar{m{z}}^{(r)}$ is differentiable w.r.t. $\phi!!!$

Learning - Reparametrisation trick

Instead of sampling directly from the posterior $(\hat{z}^{(r)} \sim q_{\phi} = \mathcal{N}(\tilde{\mu}_{\phi}, \tilde{\Sigma}_{\phi}))$ we sample as follows:

$$ar{m{z}}^{(r)} = ilde{m{\Sigma}}_{m{\phi}}^{1/2}ar{m{\epsilon}}^{(r)} + ilde{m{\mu}}_{m{\phi}} \quad ext{with} \quad ar{m{\epsilon}}^{(r)} \sim \mathcal{N}(m{0},m{I})$$

 $\hat{z}^{(r)}$ and $ar{z}^{(r)}$ follow the same distribution, BUT $ar{z}^{(r)}$ is differentiable w.r.t. $\phi!!!$

This is called the reparametrisation trick and can be used with other distributions.

Learning - Reparametrisation trick (II)

[Image from Wikimedia Commons]

Implementation note: Most deep learning libraries implement stochastic gradient DESCENT algorithms, but we would like to maximize the ELBO \rightarrow we need to change the sign.

- **Implementation note**: Most deep learning libraries implement stochastic gradient DESCENT algorithms, but we would like to maximize the ELBO \rightarrow we need to change the sign.
- **Posterior collapse**: common phenomenon when the posterior q_{ϕ} gets to close to the standard prior. It can happen for various dimensions of $z \to$ the VAE stops learning.
 - The KL term dominates the ELBO \rightarrow weight the KL term with $\beta < 1$.
 - The data can be reduced to less dimensions than $D \rightarrow$ decrease D.

VAE: Summary

Generative model. Prior: $p(z) = \mathcal{N}(z; 0, I)$ and decoder: $p_{\theta}(x|z) = \mathcal{N}(x; \mu_{\theta}(z), \Sigma_{\theta}(z))$. Inference model (encoder): $p_{\theta}(z|x) \approx q_{\phi}(z|x) = \mathcal{N}(z; \mu_{\phi}(x), \Sigma_{\phi}(x))$

Training criterion (maximise the evidence lower bound):

$$\mathcal{L}_{\mathsf{ELBO}}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \underbrace{\log p_{\boldsymbol{\theta}}(\boldsymbol{x} | \hat{\boldsymbol{z}})}_{\mathsf{Reconstruction}} - \underbrace{D_{\mathsf{KL}}\Big(q_{\boldsymbol{\phi}}(\boldsymbol{z} | \boldsymbol{x}) \Big\| p(\boldsymbol{z})\Big)}_{\mathsf{Regularisation}}$$

where $\hat{\pmb{z}} \sim q_{\pmb{\phi}}$ is sampled using the reparametrisation trick.

VAE for audio modeling

Representing audio: time vs. frequency

Fourier domain decomposes the signal in frequencies:

[Image from https://dev.to/trekhleb/]

Problem: we have to choose either time or frequency.

The short-time Fourier transform (STFT)

STFT: segment the input signal, and apply DFT to each segment.

[Image from Mathworks]

- Sine frequency sweep (pure sine of increasing frequency).
- Leyenda (piano, harmonics).
- O mio babbino caro (opera, vibrato).
- Highway to hell (rock&roll, distortion).

Each observation x will be an F-dimensional **complex** vector: $x \in \mathbb{C}^{F}$. The low-dimensional latent variable will be **real** of dimension D: $z \in \mathbb{R}^{D}$.

The model:

- Prior: $p(\boldsymbol{z}) = \mathcal{N}(\boldsymbol{z}; \boldsymbol{0}, \boldsymbol{I}).$
- Decoder: $p_{\theta}(x|z) = \mathcal{N}_c(x; 0, \Sigma_{\theta}(z))$, complex Gaussian distribution, see next.
- Posterior: $p_{\theta}(\boldsymbol{z}|\boldsymbol{x}) \approx q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) = \mathcal{N}\Big(\boldsymbol{z}; \boldsymbol{\mu}_{\phi}(\boldsymbol{x}), \boldsymbol{\Sigma}_{\phi}(\boldsymbol{x})\Big)$

We need to compute the reconstruction and the regularization terms.

Let's recall that the covariance matrices $\Sigma_{\theta}(z)$ and $\Sigma_{\phi}(x)$ are diagonal log-variance matrices.

ELBO for spectrogram VAEs

The centered 1D complex-normal writes:

$$\mathcal{N}_c(x; 0, \nu) = rac{1}{\pi
u} \exp\left(-rac{|x|^2}{
u}
ight).$$

The 1D complex-normal for the f-th entry of x as a function of the log-var writes:

$$\log \mathcal{N}_c(x_f; 0, \exp \eta_{\boldsymbol{\theta}, f}(\boldsymbol{z})) = -\log(\pi) - \eta_{\boldsymbol{\theta}, f}(\boldsymbol{z}) - \frac{|x_f|^2}{\exp(\eta_{\boldsymbol{\theta}, f}(\boldsymbol{z}))}.$$

For a given sample \hat{z} , the reconstruction term writes:

$$\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\hat{\boldsymbol{z}}) = \sum_{f} \log p_{\boldsymbol{\theta}}(x_{f}|\hat{\boldsymbol{z}}) = -F\log(\pi) - \sum_{f} \left(\eta_{\boldsymbol{\theta},f}(\hat{\boldsymbol{z}}) + \frac{|x_{f}|^{2}}{\exp(\eta_{\boldsymbol{\theta},f}(\hat{\boldsymbol{z}}))} \right).$$

ELBO for spectrogram VAEs (II)

The KL between two *D*-dimensional real Gaussian distributions writes:

$$D_{\mathrm{KL}}(\mathcal{N}_0 \| \mathcal{N}_1) = \frac{1}{2} \left(\mathrm{Tr}(\boldsymbol{\Sigma}_1^{-1} \boldsymbol{\Sigma}_0) - D + (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)^\top \boldsymbol{\Sigma}_1^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0) + \log \frac{|\boldsymbol{\Sigma}_1|}{|\boldsymbol{\Sigma}_0|} \right)$$

In our case: $\mu_0 = \tilde{\mu}_{\phi}(x)$, $\Sigma_0 = \operatorname{diag}_d(\exp{(\tilde{\eta}_{\phi,d}(x))})$, $\mu_1 = 0$ and $\Sigma_1 = I$. Thus:

$$D_{\mathrm{KL}}(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) \| p(\boldsymbol{z})) = \frac{1}{2} \left(\sum_{d} \exp\left(\tilde{\eta}_{\boldsymbol{\phi},d}(\boldsymbol{x})\right) + |\tilde{\mu}_{\boldsymbol{\phi},d}(\boldsymbol{x})|^2 - \tilde{\eta}_{\boldsymbol{\phi},d}(\boldsymbol{x}) \right) - \frac{D}{2}$$

ELBO for spectrogram VAEs (II)

The KL between two *D*-dimensional real Gaussian distributions writes:

$$D_{\mathrm{KL}}(\mathcal{N}_0 \| \mathcal{N}_1) = \frac{1}{2} \left(\mathrm{Tr}(\boldsymbol{\Sigma}_1^{-1} \boldsymbol{\Sigma}_0) - D + (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)^\top \boldsymbol{\Sigma}_1^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0) + \log \frac{|\boldsymbol{\Sigma}_1|}{|\boldsymbol{\Sigma}_0|} \right)$$

In our case: $\mu_0 = \tilde{\mu}_{\phi}(x)$, $\Sigma_0 = \operatorname{diag}_d(\exp{(\tilde{\eta}_{\phi,d}(x))})$, $\mu_1 = 0$ and $\Sigma_1 = I$. Thus:

$$D_{\mathrm{KL}}(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) \| p(\boldsymbol{z})) = \frac{1}{2} \left(\sum_{d} \exp\left(\tilde{\eta}_{\boldsymbol{\phi},d}(\boldsymbol{x})\right) + |\tilde{\mu}_{\boldsymbol{\phi},d}(\boldsymbol{x})|^2 - \tilde{\eta}_{\boldsymbol{\phi},d}(\boldsymbol{x}) \right) - \frac{D}{2}$$

Therefore the ELBO (w/o constant terms) writes:

$$\mathcal{L}_{\mathsf{ELBO}}(\boldsymbol{\theta}, \boldsymbol{\phi}) = -\sum_{f} \left(\eta_{\boldsymbol{\theta}, f}(\hat{\boldsymbol{z}}) + \frac{|\boldsymbol{x}_{f}|^{2}}{\exp(\eta_{\boldsymbol{\theta}, f}(\hat{\boldsymbol{z}}))} \right) - \frac{1}{2} \left(\sum_{d} \exp\left(\tilde{\eta}_{\boldsymbol{\phi}, d}(\boldsymbol{x})\right) + |\tilde{\mu}_{\boldsymbol{\phi}, d}(\boldsymbol{x})|^{2} - \tilde{\eta}_{\boldsymbol{\phi}, d}(\boldsymbol{x}) \right)$$

which is what we give to our optimizer.

ELBO for spectrogram VAEs (II)

The KL between two *D*-dimensional real Gaussian distributions writes:

$$D_{\mathrm{KL}}(\mathcal{N}_0 \| \mathcal{N}_1) = \frac{1}{2} \left(\mathrm{Tr}(\boldsymbol{\Sigma}_1^{-1} \boldsymbol{\Sigma}_0) - D + (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)^\top \boldsymbol{\Sigma}_1^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0) + \log \frac{|\boldsymbol{\Sigma}_1|}{|\boldsymbol{\Sigma}_0|} \right)$$

In our case: $\mu_0 = \tilde{\mu}_{\phi}(\boldsymbol{x})$, $\Sigma_0 = \operatorname{diag}_d \left(\exp\left(\tilde{\eta}_{\phi,d}(\boldsymbol{x}) \right) \right)$, $\mu_1 = \mathbf{0}$ and $\Sigma_1 = \boldsymbol{I}$. Thus:

$$D_{\text{KL}}(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) \| p(\boldsymbol{z})) = \frac{1}{2} \left(\sum_{d} \exp\left(\tilde{\eta}_{\boldsymbol{\phi},d}(\boldsymbol{x})\right) + |\tilde{\mu}_{\boldsymbol{\phi},d}(\boldsymbol{x})|^2 - \tilde{\eta}_{\boldsymbol{\phi},d}(\boldsymbol{x}) \right) - \frac{D}{2}$$

Therefore the ELBO (w/o constant terms) writes:

$$\mathcal{L}_{\mathsf{ELBO}}(\boldsymbol{\theta}, \boldsymbol{\phi}) = -\sum_{f} \left(\eta_{\boldsymbol{\theta}, f}(\hat{\boldsymbol{z}}) + \frac{|\boldsymbol{x}_{f}|^{2}}{\exp(\eta_{\boldsymbol{\theta}, f}(\hat{\boldsymbol{z}}))} \right) - \frac{1}{2} \left(\sum_{d} \exp\left(\tilde{\eta}_{\boldsymbol{\phi}, d}(\boldsymbol{x})\right) + |\tilde{\mu}_{\boldsymbol{\phi}, d}(\boldsymbol{x})|^{2} - \tilde{\eta}_{\boldsymbol{\phi}, d}(\boldsymbol{x}) \right)$$

which is what we give to our optimizer. NO!!! We should give $-\mathcal{L}_{\text{ELBO}}(\theta, \phi)$.

Thank you for your attention

- Lecture 2: The variational EM algoritm, mixtures of VAEs, application to audio-visual speech enhancement.
- Lecture 3: Dynamical variational autoencoders, application to speech enhancement.

References

- **1** D. P. Kingma and M. Welling, "Auto-encoding variational Bayes," ICLR, 2014.
- Y. Bando et al., "Statistical speech enhancement based on probabilistic integration of variational autoencoder and non-negative matrix factorization," in Proc. ICASSP, 2018, pp. 716–720
- S. Leglaive et al., "A variance modeling framework based on variational autoencoders for speech enhancement," in Proc. MLSP, 2018.
- C. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag Berlin, Heidelberg, 2006.