Xavier Alameda-Pineda

1/22

Why does the EM work?

The main mathematical object in EM is Q.
(The expected complete-data log-likelihood).

What is the relationship with the log-likelihood?
Let's take any distribution of z: g(z) and ignore © for the time being.

log p(x) = Eq(z){ log p(X)} (1)
=Eq;){Iogp()W} (2)
S B U] M) BO

2/22

Why does the EM work? (lI)

08 p(x©) = gty { g 23} 4 D (a(2)[plal))
M-step E-step

Another interpretation. Given ©:
@ Set g(z) = p(z|x; ©).

@ Optimise w.r.t. ©:

Eq(z){ Iog p();,(zz,)(a)} (5)

Why?

E-step: reduce the distance between log-likelihood and Q.
M-step: push Q and therefore push the log-likelihood.

3 /22

Why does the EM work? (lII)

X,z
08 p(x:©) = Egi{ o 25} 4 D (a(2)ptzb)) (6)
£(q,0) KL(qllp)
KL(qllp)
L(q.8) Inp(X|6)

4/22

Crucial point in “Exact EM"

We need the exact a posteriori distribution: p(z|x; ®).

What happens if we cannot use the exact posterior? Approximate it.

Two big families:

o p(z|x; C:)) has an analytic expression, but computationally too heavy.

o p(z|x; ©) does not have an analytic expression.

We will focus in the second case, and in a model called Variational
Autoencoders (VAE).

5 /22

VAE Motivation: back to PPCA

Recall the definition of PPCA:
o z~ N(0,1),
o x|z~ N(x;Az+ b, 021), o> 0.

Important limitations:
o The dependency of the mean with z is afinne.

o The covariance does not depend on z.

Non-linear generative model:
o z~N(0,1),
o x|z ~ N(x; pe(2), Xo(2)),
where pg(z) and Xg(z) are (non-linear) functions parametrised by ©.

6 /22

Formalising the generative model (1)

The generative model:
o z~ N(0,1),
° x|z~ N(x; pe(2), Zo(2)),

where pg(z) and Xg(z) will be implemented by deep neural networks
parametrised by © with input z.

7/22

Formalising the generative model (1)

The generative model:
o z~ N(0,1),
° x|z~ N(x; pe(2), Zo(2)),

where pg(z) and Xg(z) will be implemented by deep neural networks
parametrised by © with input z.

A few comments:
@ The optimal parameters @* need to maximise the log-likelihood.
@ O cannot be estimated in closed-form.
@ pe(z) and Xg(z) are differentiable w.r.t. ®, and z.

@ X g(z) needs to be a covariance matrix.

7/22

Formalising the generative model (11)

How can we ensure that Xg(z) is a covariance matrix?

o The covariance matrix is assumed to be diagonal:

v (2) 2 0
So)=| o O 0)
0 0 - v¥2)

Reduces complexity and memory, but also expressivity.

o We estimate the log-variance: ng)(z) = log V((ad)(z):

To(2) = diagg (o0 (16 (2))) (8)

The values of n((ad)(z) can be positive or negative.

8 /22

Formalising the generative model (I11)

In terms of probabilistic dependencies, they are the same as PPCA:

(D—

But | would like to draw also the non-lineariry:

The dependency of the parameters w.r.t. z is deterministic.

Denoted by fg(z) : R% — R2% this non-linearity is implemented with a
deep network, with parameters (weights and biases) ©.

9/22

The posterior distribution

For any EM-like procedure, we would need the posterior distribution:

p(zlx) X p(x|2)p(2) (9)
& N (x: po(2), Zo(2))N(z:0, 1) (10)

R g o (50~ Hol@) E6!(2)x — po(2) - el
(11)

10 / 22

The posterior distribution

For any EM-like procedure, we would need the posterior distribution:

p(zlx) X p(x|2)p(2) (9)
& N (x: po(2), Zo(2))N(z:0, 1) (10)

R g o (50~ Hol@) E6!(2)x — po(2) - el
(11)

We cannot go our “standard” way, because we cannot identify a
distribution on z.

The posterior distribution cannot be computed analytically!!!

10 / 22

Approximating the posterior distribution (1)

The posterior distribution needs to be approximated. We will propose a
family of distributions, and find the best candidate within this family.

True Posterior Distribution

Distribution
Space

Approximate Posterior
Distribution

Approximating Family

11 /22

Approximating the posterior distribution (II)

The posterior distribution will be approximated with another feed-forward
network parametrised with ®:

p(z|x) = q(z]x) = N(z; fie(x), Zo(X)) (12)

The approximating family is composed of all the distributions that can be
expressed as above, for a certain value of ®.

G =1{g¢ :R* = R @ c }, (13)

with go(x) = [fe(x), Ze(x)].

12 /22

Overall architecture

If we “chain” the posterior and the generative model:

(e sl)

o The generative model is also called the decoder.

o The inference or posterior is also called the encoder.

This is why we call these architectures variational autoencoders VAE.

But how do we optimise for the parameters © and ®7?

13 /22

Learning - ELBO

If we recall the formulation for the EM:

p(x, 2)
I =E I 14
og p(x) q(z|x){ %8 L (2x) } + (14)
Problem: the second term cannot be computed! But it's positive:
p(x, z)
I 10,0) > E I 15
ng(x167) q0(Z|X){ og q¢(Z|X)} ()

0g p(x; ©,®) = Egy(z1{ l0g po(x|2) } — Dit (d0(2[x)[p(2)) ~ (16)

Reconstruction Regularisation

This is known as Evidence Lower-BOund or ELBO: Lg go(O, ®).

Be VERY careful with these expressions.
They look alike, but they are NOT the same.

14 / 22

Learning - Sampling
But we still have one problem:

Let8o(0, @) = Eqy (2 { log po(x[2) } — Dic (d0(z1x)||p(2)) (17)

Reconstruction Regularisation

To compute the “reconstruction” term we need to take the expectation
w.r.t. ge(z|x), but recall that:

pe(x|z) = N(x; ne(2), Zo(2)). (18)
Due to the non-linearity, we cannot compute the reconstruction term in
closed form — we sample R points 21,..., 2z from ge:
LeLgo(O©, @) Z'nge x|2,) — DKL(qtb z|x) HP) (19)

- Regularisation
Reconstruction

15 / 22

Learning - Gradient ascent?

Let's go back to the architecture:

where dashed lines are deterministic, dotted lines are sampling
(we will see later for the solid line).

We agreed that there is no closed-form solution for the parameters (due to
non-linearity). We will learn the parameters using stochastic gradient
ascent (to maximise the ELBO).

We assume that g4 and fg are differentiable (to compute the gradient).

The sampling operation from qg¢ is NOT differentiable w.r.t. ®.

16 / 22

Learning - Reparametrisation trick

We use the so-called reparametrisation trick:

N(O,)

O R I e

Formally (z denotes explicitly the dependency on ®):

— 5%, + e with & ~N(0,1) (20)

So we sample from a standard Gaussian, and use the parameters fiq and
Y ¢ in differentiable operations (multiplication and addition).

If the last arrow is differentiable, then we can use gradient ascent.

17 /22

Learning - Reparametrisation trick (1)

Another way to see the reparametrisation trick (from “An Introduction to
Variational Autoencoders” by Diederik P. Kingma, Max Welling, chamilo):

Original form Reparameterized form
f Backprop l f
~ qp(zfx) V7 z = g(pxze)
¢ x Vof @ xx ~p(e)

: Deterministic node — : Evaluation of

. : Random node =P : Differentiation of f

18 / 22

Learning - The loss

We are now ready to write the loss:

Lelgo(O, ®) = Eq.,,(z\x){ log P@(X\Z)} — DL (%(Z\X)HP(Z)) (21)
Reconstruction Regularisation
R
= Zlogp@(xlﬁf’)—DKL(q¢(Z|X)HP(Z)) (22)
r=1

- Regularisation
Reconstruction

@) 1[1& X)
> [R > (loglZo(2?)| + lIx — 1o (2715 s))

r=1 (23)
+Te(To (%)) + o (%) - |0g|>:¢(X)I] (24)

Where (23) and (24) are the reconstruction and regularisation terms resp.

Homework: use the definition of the terms above to prove that.
19 /22

Learning - The loss (II)

R

00) 1|1 N A
Lego(O,®) = 5 [R Z (|0g|ze(2‘rb)| + [Ix — N@(Z?)H;e(g?))
r=1
(25)

+Te(Zo(x)) + e ()] ~ |0g|>:¢(X)I] (26)

Comments:
A =1/2, ~ . ~
o We recall that 2® = ¢/ & + f1p with & ~ N(0,1).
o We remark that all operators are differentiable w.r.t. @ and ®.
o If we remove the —% we use gradient descent.

o The term in blue is the Mahalanobis distance and can be replaced...

20 / 22

Other reconstruction possibilities

Often, we forget about the covariance matrix of the generative model X g
and use other distances rather than Mahalanobis:

o The Euclidean distance (equivalent to set £g = 1): [|x — pg(2®)|3
o The L distance: ||x — pug(2®)|1
Qo ...

In that case fg(z) : R% — R% (instead of R?%), and this links to the
deterministic autoencoders.

In addition, we can attempt to reconstruct x from another signal X

O ORI NG

a clear example are denoising VAE (X = x + b, with b being noise).

21/ 22

Differences w.r.t. EM

[EM]: Start with ©:

o E-step: Compute p(z,|x,; ©), Vn.

o M-step: Compute @, and set © to that.
(Until convergence)

[SGD]: Start with ©. Initialise also ®:

o Forward: Compute gg(x,), sample z,, compute fg5(z,), ¥n in batch.
o Backward: Compute Lg o, VgLELBO, and Vg LE Bo.
o Update © and & with your preferred gradient update rule.

(Until convergence)

O O DO

22 /22

