Fundamentals of Probabilistic Data Mining Chapter VI - Variational Autoencoders (VAE)

Xavier Alameda-Pineda

Why does the EM work?

The main mathematical object in EM is Q. (The expected complete-data log-likelihood).

What is the relationship with the log-likelihood? Let's take any distribution of z: q(z) and ignore Θ for the time being.

$$\log p(\mathbf{x}) = \mathbb{E}_{q(\mathbf{z})} \Big\{ \log p(\mathbf{x}) \Big\}$$
(1)

$$= \mathbb{E}_{q(z)} \Big\{ \log p(\mathbf{x}) \frac{p(\mathbf{z}|\mathbf{x})q(\mathbf{z})}{p(\mathbf{z}|\mathbf{x})q(\mathbf{z})} \Big\}$$
(2)

$$= \mathbb{E}_{q(\boldsymbol{z})} \Big\{ \log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z})} \Big\} + D_{\mathsf{KL}} \Big(q(\boldsymbol{z}) \Big\| p(\boldsymbol{z}|\boldsymbol{x}) \Big)$$
(3)

Why does the EM work? (II)

$$\log p(\boldsymbol{x}; \boldsymbol{\Theta}) = \underbrace{\mathbb{E}_{q(\boldsymbol{z})} \left\{ \log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z})} \right\}}_{\text{M-step}} + \underbrace{D_{\text{KL}} \left(q(\boldsymbol{z}) \| p(\boldsymbol{z} | \boldsymbol{x}) \right)}_{\text{E-step}}$$
(4)

Another interpretation. Given $\overline{\Theta}$:

1) Set $q(\mathbf{z}) = p(\mathbf{z}|\mathbf{x}; \bar{\mathbf{\Theta}})$.

Optimise w.r.t.
$$\Theta$$
:

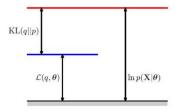
$$\mathbf{E}_{q(z)} \Big\{ \log \frac{p(\mathbf{x}, \mathbf{z}; \Theta)}{q(\mathbf{z})} \Big\}$$
(5)

Why?

2

E-step: reduce the distance between log-likelihood and \mathcal{Q} . M-step: push \mathcal{Q} and therefore push the log-likelihood. Why does the EM work? (III)

$$\log p(\boldsymbol{x}; \boldsymbol{\Theta}) = \underbrace{\mathbb{E}_{q(\boldsymbol{z})} \Big\{ \log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z})} \Big\}}_{\mathcal{L}(q, \boldsymbol{\Theta})} + \underbrace{D_{\mathsf{KL}} \Big(q(\boldsymbol{z}) \Big\| p(\boldsymbol{z} | \boldsymbol{x}) \Big)}_{\mathrm{KL}(q \| p)} \tag{6}$$



We **need** the exact a posteriori distribution: $p(\mathbf{z}|\mathbf{x}; \bar{\mathbf{\Theta}})$.

What happens if we cannot use the exact posterior? Approximate it.

Two big families:

- $p(\mathbf{z}|\mathbf{x}; \bar{\mathbf{\Theta}})$ has an analytic expression, but computationally too heavy.
- $p(\boldsymbol{z}|\boldsymbol{x}; \bar{\boldsymbol{\Theta}})$ does not have an analytic expression.

We will focus in the second case, and in a model called Variational Autoencoders (VAE).

VAE Motivation: back to PPCA

Recall the definition of PPCA:

•
$$\boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}),$$

• $\boldsymbol{x} | \boldsymbol{z} \sim \mathcal{N}(\boldsymbol{x}; \boldsymbol{A}\boldsymbol{z} + \boldsymbol{b}, \sigma^2 \boldsymbol{I}), \sigma > 0.$

Important limitations:

- The dependency of the mean with *z* is afinne.
- The covariance does not depend on z.

Non-linear generative model:

• $\boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$,

• $oldsymbol{x}|oldsymbol{z}\sim\mathcal{N}(oldsymbol{x};\mu_{m{\Theta}}(oldsymbol{z}),m{\Sigma}_{m{\Theta}}(oldsymbol{z}))$,

where $\mu_{\Theta}(z)$ and $\Sigma_{\Theta}(z)$ are (non-linear) functions parametrised by Θ .

The generative model:

•
$$\pmb{z} \sim \mathcal{N}(\pmb{0},\pmb{I})$$
,

•
$$\mathbf{x} | \mathbf{z} \sim \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{\Theta}(\mathbf{z}), \boldsymbol{\Sigma}_{\Theta}(\mathbf{z})),$$

where $\mu_{\Theta}(z)$ and $\Sigma_{\Theta}(z)$ will be implemented by deep neural networks parametrised by Θ with input z.

The generative model:

•
$$\boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}),$$

• $\mathbf{x}|\mathbf{z} \sim \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{\Theta}(\mathbf{z}), \boldsymbol{\Sigma}_{\Theta}(\mathbf{z})),$

where $\mu_{\Theta}(z)$ and $\Sigma_{\Theta}(z)$ will be implemented by deep neural networks parametrised by Θ with input z.

A few comments:

- (1) The optimal parameters Θ^* need to maximise the log-likelihood.
- \bigcirc Θ cannot be estimated in closed-form.
- (3) $\mu_{\Theta}(z)$ and $\Sigma_{\Theta}(z)$ are differentiable w.r.t. Θ , and z.
- (4) $\Sigma_{\Theta}(z)$ needs to be a covariance matrix.

Formalising the generative model (II)

How can we ensure that $\Sigma_{\Theta}(z)$ is a covariance matrix?

• The covariance matrix is assumed to be diagonal:

$$\boldsymbol{\Sigma}_{\boldsymbol{\Theta}}(\boldsymbol{z}) = \begin{pmatrix} \nu_{\boldsymbol{\Theta}}^{(1)}(\boldsymbol{z}) & 0 & \cdots & 0 \\ 0 & \nu_{\boldsymbol{\Theta}}^{(2)}(\boldsymbol{z}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \nu_{\boldsymbol{\Theta}}^{(D)}(\boldsymbol{z}) \end{pmatrix}$$

Reduces complexity and memory, but also expressivity.

• We estimate the log-variance: $\eta_{\Theta}^{(d)}(\boldsymbol{z}) = \log \nu_{\Theta}^{(d)}(\boldsymbol{z})$:

$$\boldsymbol{\Sigma}_{\boldsymbol{\Theta}}(\boldsymbol{z}) = \operatorname{diag}_{\boldsymbol{d}}\left(\exp\left(\eta_{\boldsymbol{\Theta}}^{(\boldsymbol{d})}(\boldsymbol{z})\right)\right)$$
(8)

The values of $\eta_{\Theta}^{(d)}(z)$ can be positive or negative.

(7)

Formalising the generative model (III)

In terms of probabilistic dependencies, they are the same as PPCA:

But I would like to draw also the non-lineariry:

$$z \longrightarrow f_{\Theta}(z) = [\mu_{\Theta}(z), \Sigma_{\Theta}(z)] \longrightarrow x$$

The dependency of the parameters w.r.t. z is deterministic.

Denoted by $\mathbf{f}_{\Theta}(\mathbf{z}) : \mathbb{R}^{d_z} \to \mathbb{R}^{2d_x}$, this non-linearity is implemented with a deep network, with parameters (weights and biases) Θ .

For any EM-like procedure, we would need the posterior distribution:

$$p(\boldsymbol{z}|\boldsymbol{x}) \stackrel{(\boldsymbol{z})}{\propto} p(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})$$
(9)
$$\stackrel{(\boldsymbol{z})}{\propto} \mathcal{N}(\boldsymbol{x};\boldsymbol{\mu}_{\boldsymbol{\Theta}}(\boldsymbol{z}),\boldsymbol{\Sigma}_{\boldsymbol{\Theta}}(\boldsymbol{z}))\mathcal{N}(\boldsymbol{z};\boldsymbol{0},\boldsymbol{I})$$
(10)
$$\stackrel{(\boldsymbol{z})}{\propto} \frac{1}{|\boldsymbol{\Sigma}_{\boldsymbol{\Theta}}(\boldsymbol{z})|^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{\Theta}}(\boldsymbol{z}))^{\top}\boldsymbol{\Sigma}_{\boldsymbol{\Theta}}^{-1}(\boldsymbol{z})(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{\Theta}}(\boldsymbol{z})) - \frac{1}{2}\|\boldsymbol{z}\|^{2}\right)$$
(11)

For any EM-like procedure, we would need the posterior distribution:

$$p(\boldsymbol{z}|\boldsymbol{x}) \stackrel{(\boldsymbol{z})}{\propto} p(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})$$
(9)
$$\stackrel{(\boldsymbol{z})}{\propto} \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}_{\Theta}(\boldsymbol{z}), \boldsymbol{\Sigma}_{\Theta}(\boldsymbol{z}))\mathcal{N}(\boldsymbol{z}; \boldsymbol{0}, \boldsymbol{I})$$
(10)
$$\stackrel{(\boldsymbol{z})}{\propto} \frac{1}{|\boldsymbol{\Sigma}_{\Theta}(\boldsymbol{z})|^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_{\Theta}(\boldsymbol{z}))^{\top} \boldsymbol{\Sigma}_{\Theta}^{-1}(\boldsymbol{z})(\boldsymbol{x} - \boldsymbol{\mu}_{\Theta}(\boldsymbol{z})) - \frac{1}{2} \|\boldsymbol{z}\|^{2}\right)$$

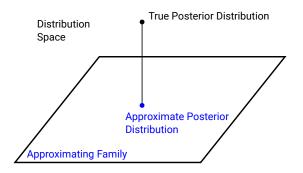
We cannot go our "standard" way, because we cannot identify a distribution on z.

The posterior distribution cannot be computed analytically!!!

(11)

Approximating the posterior distribution (I)

The posterior distribution needs to be approximated. We will propose a family of distributions, and find the **best candidate within this family**.



The posterior distribution will be approximated with **another** feed-forward network parametrised with Φ :

$$p(\boldsymbol{z}|\boldsymbol{x}) \approx q(\boldsymbol{z}|\boldsymbol{x}) = \mathcal{N}(\boldsymbol{z}; \tilde{\boldsymbol{\mu}}_{\boldsymbol{\Phi}}(\boldsymbol{x}), \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{\Phi}}(\boldsymbol{x}))$$
 (12)

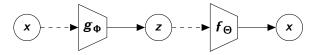
The approximating family is composed of all the distributions that can be expressed as above, for a certain value of Φ .

$$\mathcal{G} = \{ \boldsymbol{g}_{\boldsymbol{\Phi}} : \mathbb{R}^{d_x} \to \mathbb{R}^{2d_z}; \boldsymbol{\Phi} \in \boldsymbol{\Phi} \},$$
(13)

with $\boldsymbol{g}_{\boldsymbol{\Phi}}(\boldsymbol{x}) = [ilde{\mu}_{\boldsymbol{\Phi}}(\boldsymbol{x}), ilde{\boldsymbol{\Sigma}}_{\boldsymbol{\Phi}}(\boldsymbol{x})].$

Overall architecture

If we "chain" the posterior and the generative model:



- The generative model is also called the decoder.
- The inference or posterior is also called the **encoder**.

This is why we call these architectures **variational autoencoders** VAE. But how do we optimise for the parameters Θ and Φ ?

Learning - ELBO

If we recall the formulation for the EM:

$$\log p(\mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \Big\{ \log \frac{p(\mathbf{x}, \mathbf{z})}{q(\mathbf{z}|\mathbf{x})} \Big\} + D_{\mathsf{KL}} \Big(q(\mathbf{z}|\mathbf{x}) \Big\| p(\mathbf{z}|\mathbf{x}) \Big)$$
(14)

Problem: the second term cannot be computed! But it's positive:

$$\log p(\mathbf{x}; \mathbf{\Theta}, \mathbf{\Phi}) \geq \mathbb{E}_{q_{\mathbf{\Phi}}(\mathbf{z}|\mathbf{x})} \left\{ \log \frac{p(\mathbf{x}, \mathbf{z})}{q_{\mathbf{\Phi}}(\mathbf{z}|\mathbf{x})} \right\}$$
(15)
$$\log p(\mathbf{x}; \mathbf{\Theta}, \mathbf{\Phi}) \geq \underbrace{\mathbb{E}_{q_{\mathbf{\Phi}}(\mathbf{z}|\mathbf{x})} \left\{ \log p_{\mathbf{\Theta}}(\mathbf{x}|\mathbf{z}) \right\}}_{\text{Reconstruction}} - \underbrace{D_{\mathsf{KL}} \left(q_{\mathbf{\Phi}}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}) \right)}_{\text{Regularisation}}$$
(16)

This is known as **Evidence Lower-BOund or ELBO**: $\mathcal{L}_{ELBO}(\Theta, \Phi)$.

Be VERY careful with these expressions. They look alike, but they are NOT the same.

Learning - Sampling

But we still have one problem:

$$\mathcal{L}_{\mathsf{ELBO}}(\boldsymbol{\Theta}, \boldsymbol{\Phi}) = \underbrace{\mathbb{E}_{q_{\boldsymbol{\Phi}}(\boldsymbol{z}|\boldsymbol{x})} \Big\{ \log p_{\boldsymbol{\Theta}}(\boldsymbol{x}|\boldsymbol{z}) \Big\}}_{\mathsf{Reconstruction}} - \underbrace{\mathcal{D}_{\mathsf{KL}} \Big(q_{\boldsymbol{\Phi}}(\boldsymbol{z}|\boldsymbol{x}) \Big\| p(\boldsymbol{z}) \Big)}_{\mathsf{Regularisation}}$$
(17)

To compute the "reconstruction" term we need to take the expectation w.r.t. $q_{\Phi}(z|x)$, but recall that:

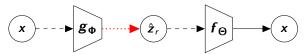
$$p_{\Theta}(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{\Theta}(\mathbf{z}), \boldsymbol{\Sigma}_{\Theta}(\mathbf{z})). \tag{18}$$

Due to the non-linearity, we cannot compute the reconstruction term in closed form \rightarrow we sample R points $\hat{z}_1, \ldots, \hat{z}_R$ from q_{Φ} :

$$\mathcal{L}_{\mathsf{ELBO}}(\boldsymbol{\Theta}, \boldsymbol{\Phi}) = \underbrace{\frac{1}{R} \sum_{r=1}^{R} \log p_{\boldsymbol{\Theta}}(\boldsymbol{x} | \hat{\boldsymbol{z}}_{r})}_{\mathsf{Reconstruction}} - \underbrace{\mathcal{D}_{\mathsf{KL}}(q_{\boldsymbol{\Phi}}(\boldsymbol{z} | \boldsymbol{x}) \| \boldsymbol{p}(\boldsymbol{z}))}_{\mathsf{Regularisation}}$$
(19)

Learning - Gradient ascent?

Let's go back to the architecture:



where dashed lines are deterministic, dotted lines are sampling (we will see later for the solid line).

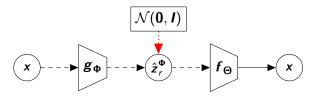
We agreed that there is no closed-form solution for the parameters (due to non-linearity). We will learn the parameters using stochastic gradient ascent (to maximise the ELBO).

We assume that g_{Φ} and f_{Θ} are differentiable (to compute the gradient).

The sampling operation from q_{Φ} is NOT differentiable w.r.t. Φ .

Learning - Reparametrisation trick

We use the so-called reparametrisation trick:



Formally $(\hat{z}_r^{\Phi} \text{ denotes explicitly the dependency on } \Phi)$:

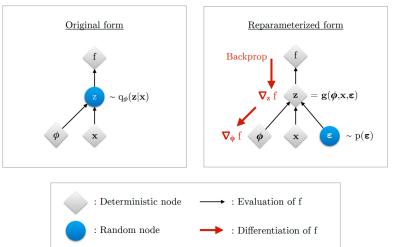
$$\hat{\boldsymbol{z}}_{r}^{\boldsymbol{\Phi}} = \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{\Phi}}^{1/2} \hat{\boldsymbol{\epsilon}}_{r} + \tilde{\boldsymbol{\mu}}_{\boldsymbol{\Phi}} \quad \text{with} \quad \hat{\boldsymbol{\epsilon}}_{r} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$$
 (20)

So we sample from a standard Gaussian, and use the parameters $\tilde{\mu}_{\Phi}$ and $\tilde{\Sigma}_{\Phi}$ in differentiable operations (multiplication and addition).

If the last arrow is differentiable, then we can use gradient ascent.

Learning - Reparametrisation trick (II)

Another way to see the reparametrisation trick (from "An Introduction to Variational Autoencoders" by Diederik P. Kingma, Max Welling, chamilo):



Learning - The loss

We are now ready to write the loss:

$$\mathcal{L}_{\text{ELBO}}(\boldsymbol{\Theta}, \boldsymbol{\Phi}) = \underbrace{\mathbb{E}_{q_{\boldsymbol{\Phi}}(\boldsymbol{z}|\boldsymbol{x})} \left\{ \log p_{\boldsymbol{\Theta}}(\boldsymbol{x}|\boldsymbol{z}) \right\}}_{\text{Reconstruction}} - \underbrace{D_{\text{KL}} \left(q_{\boldsymbol{\Phi}}(\boldsymbol{z}|\boldsymbol{x}) \left\| \boldsymbol{p}(\boldsymbol{z}) \right)}_{\text{Regularisation}} \right)$$
(21)
$$= \underbrace{\sum_{r=1}^{R} \log p_{\boldsymbol{\Theta}}(\boldsymbol{x}|\hat{\boldsymbol{z}}_{r}^{\boldsymbol{\Phi}})}_{\text{Reconstruction}} - \underbrace{D_{\text{KL}} \left(q_{\boldsymbol{\Phi}}(\boldsymbol{z}|\boldsymbol{x}) \left\| \boldsymbol{p}(\boldsymbol{z}) \right)}_{\text{Regularisation}} \right)$$
(22)
$$\stackrel{(\boldsymbol{\Theta}, \boldsymbol{\Phi})}{=} - \frac{1}{2} \left[\frac{1}{R} \sum_{r=1}^{R} \left(\log |\boldsymbol{\Sigma}_{\boldsymbol{\Theta}}(\hat{\boldsymbol{z}}_{r}^{\boldsymbol{\Phi}})| + \| \boldsymbol{x} - \boldsymbol{\mu}_{\boldsymbol{\Theta}}(\hat{\boldsymbol{z}}_{r}^{\boldsymbol{\Phi}}) \|_{\boldsymbol{\Sigma}_{\boldsymbol{\Theta}}(\hat{\boldsymbol{z}}_{r}^{\boldsymbol{\Phi}})} \right) \right)$$
(23)
$$+ \operatorname{Tr}(\boldsymbol{\Sigma}_{\boldsymbol{\Phi}}(\boldsymbol{x})) + \| \boldsymbol{\mu}_{\boldsymbol{\Phi}}(\boldsymbol{x}) \|^{2} - \log |\boldsymbol{\Sigma}_{\boldsymbol{\Phi}}(\boldsymbol{x})| \right]$$
(24)

Where (23) and (24) are the reconstruction and regularisation terms resp. **Homework**: use the definition of the terms above to prove that.

Learning - The loss (II)

$$\mathcal{L}_{\mathsf{ELBO}}(\boldsymbol{\Theta}, \boldsymbol{\Phi}) \stackrel{(\boldsymbol{\Theta}, \boldsymbol{\Phi})}{=} -\frac{1}{2} \left[\frac{1}{R} \sum_{r=1}^{R} \left(\log |\boldsymbol{\Sigma}_{\boldsymbol{\Theta}}(\hat{\boldsymbol{z}}_{r}^{\boldsymbol{\Phi}})| + \|\boldsymbol{x} - \boldsymbol{\mu}_{\boldsymbol{\Theta}}(\hat{\boldsymbol{z}}_{r}^{\boldsymbol{\Phi}}) \|_{\boldsymbol{\Sigma}_{\boldsymbol{\Theta}}(\hat{\boldsymbol{z}}_{r}^{\boldsymbol{\Phi}})}^{2} \right) \right]$$

$$+ \operatorname{Tr}(\boldsymbol{\Sigma}_{\boldsymbol{\Phi}}(\boldsymbol{x})) + \|\boldsymbol{\mu}_{\boldsymbol{\Phi}}(\boldsymbol{x})\|^{2} - \log |\boldsymbol{\Sigma}_{\boldsymbol{\Phi}}(\boldsymbol{x})|$$

$$(25)$$

Comments:

• We recall that
$$\hat{m{z}}_r^{m{\Phi}} = ilde{m{\Sigma}}_{m{\Phi}}^{1/2} \hat{m{\epsilon}}_r + ilde{m{\mu}}_{m{\Phi}}$$
 with $\hat{m{\epsilon}}_r \sim \mathcal{N}(m{0},m{I})$.

• We remark that all operators are differentiable w.r.t. Θ and Φ .

- If we remove the " $-\frac{1}{2}$ " we use gradient descent.
- The term in blue is the Mahalanobis distance and can be replaced...

Often, we forget about the covariance matrix of the generative model Σ_Θ and use other distances rather than Mahalanobis:

- The Euclidean distance (equivalent to set $\Sigma_{\Theta} = I$): $\|x \mu_{\Theta}(\hat{z}_r^{\Phi})\|_2^2$
- The L_1 distance: $\|m{x} m{\mu}_{\Theta}(\hat{m{z}}_r^{m{\Phi}})\|_1$

• ...

In that case $f_{\Theta}(z) : \mathbb{R}^{d_z} \to \mathbb{R}^{d_x}$ (instead of \mathbb{R}^{2d_x}), and this links to the deterministic autoencoders.

In addition, we can attempt to reconstruct x from another signal \tilde{x} : $\tilde{x} \longrightarrow g_{\Phi} \longrightarrow z \longrightarrow f_{\Theta} \longrightarrow x$

a clear example are denoising VAE ($\tilde{x} = x + b$, with b being noise).

[EM]: Start with $\overline{\Theta}$:

- E-step: Compute $p(\boldsymbol{z}_n | \boldsymbol{x}_n; \bar{\boldsymbol{\Theta}}), \forall n$.
- ${\ {\bullet} \ }$ M-step: Compute ${\ } {\Theta}^*,$ and set $\bar{\ } {\Theta}$ to that.

(Until convergence)

[SGD]: Start with $\overline{\Theta}$. Initialise also $\overline{\Phi}$:

- Forward: Compute $g_{\bar{\Phi}}(x_n)$, sample z_n , compute $f_{\bar{\Theta}}(z_n)$, $\forall n$ in batch.
- Backward: Compute \mathcal{L}_{ELBO} , $\nabla_{\bar{\Theta}} \mathcal{L}_{ELBO}$, and $\nabla_{\bar{\Phi}} \mathcal{L}_{ELBO}$.
- $\, \bullet \,$ Update $\bar{\Theta}$ and $\bar{\Phi}$ with your preferred gradient update rule.

(Until convergence)

