
Fundamentals of Probabilistic Data Mining
Chapter VI - Variational Autoencoders (VAE)

Xavier Alameda-Pineda

1 / 22

Why does the EM work?

The main mathematical object in EM is Q.
(The expected complete-data log-likelihood).

What is the relationship with the log-likelihood?
Let’s take any distribution of z: q(z) and ignore Θ for the time being.

log p(x) = Eq(z)
{

log p(x)
}

(1)

= Eq(z)
{

log p(x)p(z|x)q(z)
p(z|x)q(z)

}
(2)

= Eq(z)
{

log p(x, z)
q(z)

}
+ DKL

(
q(z)

∥∥∥p(z|x)
)

(3)

2 / 22

Why does the EM work? (II)

log p(x; Θ) = Eq(z)
{

log p(x, z)
q(z)

}
︸ ︷︷ ︸

M-step

+ DKL
(
q(z)

∥∥∥p(z|x)
)

︸ ︷︷ ︸
E-step

(4)

Another interpretation. Given Θ̄:
1 Set q(z) = p(z|x; Θ̄).
2 Optimise w.r.t. Θ:

Eq(z)
{

log p(x, z; Θ)
q(z)

}
(5)

Why?
E-step: reduce the distance between log-likelihood and Q.
M-step: push Q and therefore push the log-likelihood.

3 / 22

Why does the EM work? (III)

log p(x; Θ) = Eq(z)
{

log p(x, z)
q(z)

}
︸ ︷︷ ︸

L(q,Θ)

+ DKL
(
q(z)

∥∥∥p(z|x)
)

︸ ︷︷ ︸
KL(q‖p)

(6)

4 / 22

Crucial point in “Exact EM”

We need the exact a posteriori distribution: p(z|x; Θ̄).

What happens if we cannot use the exact posterior? Approximate it.

Two big families:
p(z|x; Θ̄) has an analytic expression, but computationally too heavy.
p(z|x; Θ̄) does not have an analytic expression.

We will focus in the second case, and in a model called Variational
Autoencoders (VAE).

5 / 22

VAE Motivation: back to PPCA

Recall the definition of PPCA:
z ∼ N (0, I),
x|z ∼ N (x; Az + b, σ2I), σ > 0.

Important limitations:
The dependency of the mean with z is afinne.
The covariance does not depend on z.

Non-linear generative model:
z ∼ N (0, I),
x|z ∼ N (x; µΘ(z),ΣΘ(z)),

where µΘ(z) and ΣΘ(z) are (non-linear) functions parametrised by Θ.

6 / 22

Formalising the generative model (I)

The generative model:
z ∼ N (0, I),
x|z ∼ N (x; µΘ(z),ΣΘ(z)),

where µΘ(z) and ΣΘ(z) will be implemented by deep neural networks
parametrised by Θ with input z.

A few comments:
1 The optimal parameters Θ∗ need to maximise the log-likelihood.
2 Θ cannot be estimated in closed-form.
3 µΘ(z) and ΣΘ(z) are differentiable w.r.t. Θ, and z.
4 ΣΘ(z) needs to be a covariance matrix.

7 / 22

Formalising the generative model (I)

The generative model:
z ∼ N (0, I),
x|z ∼ N (x; µΘ(z),ΣΘ(z)),

where µΘ(z) and ΣΘ(z) will be implemented by deep neural networks
parametrised by Θ with input z.

A few comments:
1 The optimal parameters Θ∗ need to maximise the log-likelihood.
2 Θ cannot be estimated in closed-form.
3 µΘ(z) and ΣΘ(z) are differentiable w.r.t. Θ, and z.
4 ΣΘ(z) needs to be a covariance matrix.

7 / 22

Formalising the generative model (II)

How can we ensure that ΣΘ(z) is a covariance matrix?
The covariance matrix is assumed to be diagonal:

ΣΘ(z) =


ν

(1)
Θ (z) 0 · · · 0
0 ν

(2)
Θ (z) · · · 0

...
...

0 0 · · · ν
(D)
Θ (z)

 (7)

Reduces complexity and memory, but also expressivity.
We estimate the log-variance: η(d)

Θ (z) = log ν(d)
Θ (z):

ΣΘ(z) = diagd

(
exp

(
η

(d)
Θ (z)

))
(8)

The values of η(d)
Θ (z) can be positive or negative.

8 / 22

Formalising the generative model (III)

In terms of probabilistic dependencies, they are the same as PPCA:

z x

But I would like to draw also the non-lineariry:

z f Θ(z) = [µΘ(z),ΣΘ(z)] x

The dependency of the parameters w.r.t. z is deterministic.

Denoted by f Θ(z) : Rdz → R2dx , this non-linearity is implemented with a
deep network, with parameters (weights and biases) Θ.

9 / 22

The posterior distribution

For any EM-like procedure, we would need the posterior distribution:

p(z|x)
(z)
∝ p(x|z)p(z) (9)
(z)
∝ N (x; µΘ(z),ΣΘ(z))N (z; 0, I) (10)
(z)
∝ 1
|ΣΘ(z)|1/2 exp

(
−1
2(x − µΘ(z))>Σ−1

Θ (z)(x − µΘ(z))− 1
2‖z‖

2
)

(11)

We cannot go our “standard” way, because we cannot identify a
distribution on z.

The posterior distribution cannot be computed analytically!!!

10 / 22

The posterior distribution

For any EM-like procedure, we would need the posterior distribution:

p(z|x)
(z)
∝ p(x|z)p(z) (9)
(z)
∝ N (x; µΘ(z),ΣΘ(z))N (z; 0, I) (10)
(z)
∝ 1
|ΣΘ(z)|1/2 exp

(
−1
2(x − µΘ(z))>Σ−1

Θ (z)(x − µΘ(z))− 1
2‖z‖

2
)

(11)

We cannot go our “standard” way, because we cannot identify a
distribution on z.

The posterior distribution cannot be computed analytically!!!

10 / 22

Approximating the posterior distribution (I)

The posterior distribution needs to be approximated. We will propose a
family of distributions, and find the best candidate within this family.

True Posterior Distribution

Approximate Posterior
Distribution

Distribution
Space

Approximating Family

11 / 22

Approximating the posterior distribution (II)

The posterior distribution will be approximated with another feed-forward
network parametrised with Φ:

p(z|x) ≈ q(z|x) = N (z; µ̃Φ(x), Σ̃Φ(x)) (12)

The approximating family is composed of all the distributions that can be
expressed as above, for a certain value of Φ.

G = {gΦ : Rdx → R2dz ; Φ ∈ Φ}, (13)

with gΦ(x) = [µ̃Φ(x), Σ̃Φ(x)].

12 / 22

Overall architecture

If we “chain” the posterior and the generative model:

x gΦ z f Θ x

The generative model is also called the decoder.
The inference or posterior is also called the encoder.

This is why we call these architectures variational autoencoders VAE.

But how do we optimise for the parameters Θ and Φ?

13 / 22

Learning - ELBO

If we recall the formulation for the EM:

log p(x) = Eq(z|x)
{

log p(x, z)
q(z|x)

}
+ DKL

(
q(z|x)

∥∥∥p(z|x)
)

(14)

Problem: the second term cannot be computed! But it’s positive:

log p(x; Θ,Φ) ≥ EqΦ(z|x)
{

log p(x, z)
qΦ(z|x)

}
(15)

log p(x; Θ,Φ) ≥ EqΦ(z|x)
{

log pΘ(x|z)
}

︸ ︷︷ ︸
Reconstruction

−DKL
(
qΦ(z|x)

∥∥∥p(z)
)

︸ ︷︷ ︸
Regularisation

(16)

This is known as Evidence Lower-BOund or ELBO: LELBO(Θ,Φ).

Be VERY careful with these expressions.
They look alike, but they are NOT the same.

14 / 22

Learning - Sampling
But we still have one problem:

LELBO(Θ,Φ) = EqΦ(z|x)
{

log pΘ(x|z)
}

︸ ︷︷ ︸
Reconstruction

−DKL
(
qΦ(z|x)

∥∥∥p(z)
)

︸ ︷︷ ︸
Regularisation

(17)

To compute the “reconstruction” term we need to take the expectation
w.r.t. qΦ(z|x), but recall that:

pΘ(x|z) = N (x; µΘ(z),ΣΘ(z)). (18)

Due to the non-linearity, we cannot compute the reconstruction term in
closed form → we sample R points ẑ1, . . . , ẑR from qΦ:

LELBO(Θ,Φ) = 1
R

R∑
r=1

log pΘ(x|ẑ r)︸ ︷︷ ︸
Reconstruction

−DKL
(
qΦ(z|x)

∥∥∥p(z)
)

︸ ︷︷ ︸
Regularisation

(19)

15 / 22

Learning - Gradient ascent?

Let’s go back to the architecture:

x gΦ ẑ r f Θ x

where dashed lines are deterministic, dotted lines are sampling
(we will see later for the solid line).

We agreed that there is no closed-form solution for the parameters (due to
non-linearity). We will learn the parameters using stochastic gradient
ascent (to maximise the ELBO).

We assume that gΦ and f Θ are differentiable (to compute the gradient).

The sampling operation from qΦ is NOT differentiable w.r.t. Φ.

16 / 22

Learning - Reparametrisation trick

We use the so-called reparametrisation trick:

x gΦ ẑΦ
r f Θ x

N (0, I)

Formally (ẑΦ
r denotes explicitly the dependency on Φ):

ẑΦ
r = Σ̃1/2

Φ ε̂r + µ̃Φ with ε̂r ∼ N (0, I) (20)

So we sample from a standard Gaussian, and use the parameters µ̃Φ and
Σ̃Φ in differentiable operations (multiplication and addition).

If the last arrow is differentiable, then we can use gradient ascent.

17 / 22

Learning - Reparametrisation trick (II)

Another way to see the reparametrisation trick (from “An Introduction to
Variational Autoencoders” by Diederik P. Kingma, Max Welling, chamilo):

18 / 22

Learning - The loss
We are now ready to write the loss:

LELBO(Θ,Φ) = EqΦ(z|x)
{

log pΘ(x|z)
}

︸ ︷︷ ︸
Reconstruction

−DKL
(
qΦ(z|x)

∥∥∥p(z)
)

︸ ︷︷ ︸
Regularisation

(21)

=
R∑

r=1
log pΘ(x|ẑΦ

r)︸ ︷︷ ︸
Reconstruction

−DKL
(
qΦ(z|x)

∥∥∥p(z)
)

︸ ︷︷ ︸
Regularisation

(22)

(Θ,Φ)= −1
2

[
1
R

R∑
r=1

(
log|ΣΘ(ẑΦ

r)|+ ‖x − µΘ(ẑΦ
r)‖2ΣΘ(ẑΦ

r)

)
(23)

+ Tr(ΣΦ(x)) + ‖µΦ(x)‖2 − log|ΣΦ(x)|
]

(24)

Where (23) and (24) are the reconstruction and regularisation terms resp.
Homework: use the definition of the terms above to prove that.

19 / 22

Learning - The loss (II)

LELBO(Θ,Φ) (Θ,Φ)= −1
2

[
1
R

R∑
r=1

(
log|ΣΘ(ẑΦ

r)|+ ‖x − µΘ(ẑΦ
r)‖2ΣΘ(ẑΦ

r)

)
(25)

+ Tr(ΣΦ(x)) + ‖µΦ(x)‖2 − log|ΣΦ(x)|
]

(26)

Comments:
We recall that ẑΦ

r = Σ̃1/2
Φ ε̂r + µ̃Φ with ε̂r ∼ N (0, I).

We remark that all operators are differentiable w.r.t. Θ and Φ.
If we remove the “−1

2” we use gradient descent.
The term in blue is the Mahalanobis distance and can be replaced...

20 / 22

Other reconstruction possibilities

Often, we forget about the covariance matrix of the generative model ΣΘ
and use other distances rather than Mahalanobis:

The Euclidean distance (equivalent to set ΣΘ = I): ‖x − µΘ(ẑΦ
r)‖22

The L1 distance: ‖x − µΘ(ẑΦ
r)‖1

...
In that case f Θ(z) : Rdz → Rdx (instead of R2dx), and this links to the
deterministic autoencoders.

In addition, we can attempt to reconstruct x from another signal x̃:

x̃ gΦ z f Θ x

a clear example are denoising VAE (x̃ = x + b, with b being noise).

21 / 22

Differences w.r.t. EM

[EM]: Start with Θ̄:
E-step: Compute p(zn|xn; Θ̄), ∀n.
M-step: Compute Θ∗, and set Θ̄ to that.

(Until convergence)

[SGD]: Start with Θ̄. Initialise also Φ̄:
Forward: Compute g Φ̄(xn), sample zn, compute f Θ̄(zn), ∀n in batch.
Backward: Compute LELBO, ∇Θ̄LELBO, and ∇Φ̄LELBO.
Update Θ̄ and Φ̄ with your preferred gradient update rule.

(Until convergence)

x gΦ z f Θ x

22 / 22

