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Chapter 1

Introduction to Probabilistic Learning

1.1 Introduction
Probabilistic learning means wemodel our data using probabilities. For example in classification, we aim to estimate
the posterior probability of an item x: p(c|x) for every possible class c. To develop complex probabilistic models, we
will use basic concepts in probabilities such as the Bayes rule:

p(x, c) = p(x|c)p(c) ⇒ p(c|x) =
p(x|c)p(c)∑
k

p(x|k)p(k)
. (1.1)

But before that, we should quickly recall what do these "p" mean.

• For discrete variables (i.e. measurable events are discrete), the p(c) is the probability that the random variable
takes the value c, and we write:

p(c) = P (C = c). (1.2)

• For continuous variables (i.e. measurable events are continuous), p(x) denotes the probability density function
fX at x:

p(x) = fX(x) (1.3)

and that probabilities can be computed over measurable sets, as the integral over the set:

p(X ) = P (x ∈ X ) =

∫
X
fX(x)dx. (1.4)

As a consequence, the probability of a single value is always zero P ({x}) = 0.

We will be discussing probabilistic models with hidden or latent random variables. This means that some variables
of the model will be observed, while other will not be observed (thus latent/hidden). This is useful for a wide variety
of applications.

Example 1: Clustering Given a set of data points (xj)j=1,...,n in Rd, we aim to find (& predict) clusters (groups of
points). In a probabilistic model-based approach, we will have one latent variables assigned to each point, zj . The
realisation of the latent variable will index the cluster the associated observation belongs to. The model states that
two observations belonging to the same cluster should have the same conditional distribution. We will discuss this
model in detail in the Gaussian mixture model (GMM) chapter.

Figure 1.1: Example of a clustering result in 2D with 3 clusters.
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Example 2: Dimensionality Reduction It is difficult to work with high-dimensional data (visualisation, pattern iden-
tification, etc). Ideally we would like to use a lower-dimensional representation. One possibility is to project in the
subspace spanning the largest variance/energy. We will discuss more about this in the probabilistic principal compo-
nent analysis (PPCA) chapter.

u1

u2

u3

?

Figure 1.2: Example of dimensionality reduction result from 3 to 2 dimensions (spanned by the blue and red vectors.
The original points are projected in the sub-space with lower dimension (e.g. green arrow).

Example 3: Analysis of Sequential Data Temporal data segmentation can be seen as a special case of clustering,
where temporal dependencies are important. One can hypothesize that the observation/latent variables at time t
depend only on a few of the past variables. In that case we say that the model is Markovian. A very important
example are hidden Markov models (HMM), that will we widely discussed.

Figure 1.3: Example of temporal segmentation of a time-series into three color-coded different segments.

In addition, we will also discuss approximate inference tools, mainly variational inference. In particular the family
of variational autoencoders. We will also discuss other non-linear models such as normalising flows and diffusion
models.

1.2 Multivariate Gaussians

1.2.1 Recalling the 1D Gaussian Distribution
Let’s recall the definition of the probability density function of univariate Gaussian distribution:

p(x) = N (x;µ, ν) =
1√
2πν

exp
(
− (x− µ)2

2ν

)
, (1.5)

with x ∈ R, µ ∈ R and ν ∈ R+. The parameters µ and ν are called respectively the mean and the variance, and satisfy:

µ = Ep(x){x} ν = Ep(x){(x− µ)2}. (1.6)

Remark 1.1: We will often use the expectation of a function f of a random variable x w.r.t. the probability density
function p(x), and denote it by:

Ep(x){f(x)} =

∫
X
f(x)p(x)dx, (1.7)

where X is the domain of the random variable x.
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One very common and useful concept is the maximum-likelihood estimators. To derive them, we assume the exis-
tence of N observations X = {x1, . . . , xN} following a univariate Gaussian distribution, and the aim is to find the
values of the parameters maximising the log-likelihood:

L(µ, ν|X) =

N∑
n=1

logN (xn;µ, ν) (1.8)

Exercise 1.1: Prove that the expressions for the maximum likelihood estimators µ∗ and ν∗ are:

µ∗ =
1

N

N∑
n=1

xn ν∗ =
1

N

N∑
n=1

(xn − µ∗)2. (1.9)

1.2.2 Constructing Multivariate Gaussian Distributions
As Product of Independent Gaussians But what happens now if we want to define a Gaussian on RD? One trivial
extension of the 1D Gaussian is to consider each dimension as an independent Gaussian, with a different mean and
variance: µ1, . . . , µD and ν1, . . . , νD.
In that case the density writes:

p(x) = N (x;µ,ν) =

D∏
d=1

1√
2πνd

exp
(
− (xd − µd)2

2νd

)
, (1.10)

where we have defined x = (x1, . . . , xD) ∈ RD , µ = (µ1, . . . , µD) ∈ RD and ν = (ν1, . . . , νD), νd ∈ R+.

Figure 1.4: Probability density function of a 2D Gaussian distribution.

Exercise 1.2: Derive the maximum likelihood estimators for µ and ν.

This is a special case of a multivariate Gaussian distribution. To present the more general case, we first remark that
the above expression can be rewritten using matrix notation. Indeed, by defining:

Σ = diag(ν) =


ν1 0 . . . 0
0 ν2 . . . 0
...

... . . . ...
0 0 . . . νD

 (1.11)

the density rewrites as:

p(x) = N (x;µ,Σ) =
1√
|2πΣ|

exp
(
− 1

2
(x− µ)>Σ−1(x− µ)

)
. (1.12)

Exercise 1.3: Prove it!
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Generalisation to “any” Covariance Matrix Naturally, the question of the constraints/conditions on the matrix Σ
arises. In other words, one wonders whether or not a multivariate Gaussian distribution can be defined for any matrix
Σ. The answer is simply no. The so-called covariance matrix must be symmetric and positive definite matrices.

Remark 1.2: AD ×D symmetric matrix Σ is positive definite if and only if v>Σv > 0, ∀v 6= 0.

For the Gaussian distribution, this is intuitive, since the variance should be strictly positive in any direction, see Fig-
ure 1.4. Let Σ be a symmetric and positive definite matrix, the Σ has the following properties:

• All eigenvalues of Σ are real and strictly positive.

• The inverse of Σ is symmetric and positive definite.

• We can write Σ = UΛU> with Λ diagonal and U orthogonal, with Λ containing the eigenvalues and U the
eigenvectors (as columns).

• With this notation the inverse writes: Σ−1 = UΛ−1U>.

Exercise 1.4: Prove that the inverse of a (symmetric) positive definite matrix always exists.

If Σ is a covariance matrix we can define the Mahalanobis distance:

M(x;µ,Σ) = (x− µ)>Σ−1(x− µ) (1.13)

(which is the Euclidean distance for µ = 0 and Σ = I).

Remark 1.3: Given a vector µ ∈ RD and symmetric and positive definite matrix Σ ∈ RD×D , we can define the
probability density function of a multivariate Gaussian distribution as:

N (x;µ,Σ) =
1√
|2πΣ|

exp
(
− 1

2
M(x;µ,Σ)

)
=

1√
|2πΣ|

exp
(
− 1

2
(x− µ)>Σ−1(x− µ)

)
(1.14)

The vector µ and the matrix Σ are usually referred to as the mean vector and the covariance matrix. The covariance
matrix corresponds to the variance (and not to the standard deviation) of a univariate Gaussian. Formally, the mean
vector and covariance matrix are defined as:

µ = EN (x;µ,Σ){x} Σ = EN (x;µ,Σ){(x− µ)(x− µ)>}. (1.15)

Exercise 1.5: Prove that the normalisation constant of a multivariate Gaussian distribution with covariance matrix Σ
is
√
|2πΣ|.

As Linear Transformations of the Standard Gaussian Multivariate Gaussian distributions can be constructed from
the so-called standard Gaussian by using linear transformations.

Remark 1.4: The standardmultivariate Gaussian is defined as the zero-mean and unit-variance Gaussian distribution,
or equivalently, as the cartesian product ofD univariate standard Gaussian distributions. The associated probability
density function writes:

N (z; 0, I) =
1

(2π)D/2
exp

(
− 1

2
‖z‖2

)
. (1.16)

Exercise 1.6: Let us consider the case where z follows a standard multivariate Gaussian distribution, and we define
x = Az + µ with A ∈ RD×D being an invertible matrix (|A| 6= 0). Prove that:

p(x) = N (x;µ,Σ), with Σ = AA>. (1.17)

Implicitly, we are saying that for any invertible matrix A, AA> is symmetric (obvious) and positive definite. We will
use this construction using linear transformations to better understand multivariate Gaussians. We will take several
particular cases, and plot the level curves and associated probability density functions. For plotting purposes we will
restrict to D = 2. For simplicity and without loss of generality, we will ignore the mean vector. We will consider four
cases:

x = z x =

( √
2 0

0 1/
√

3

)
︸ ︷︷ ︸

A1

z x =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
︸ ︷︷ ︸

A2(θ), θ=30◦

z x = A2A1z. (1.18)
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The first case corresponds to plot the standard Gaussian:

Figure 1.5: Plots corresponding to the standard multivariate Gaussian. (left) Level curves and sample data points in
green. (right) 3D plot of the probability density function, and associated level curves.

The second case corresponds to scaling the points with different values on the first and second dimension.

Figure 1.6: Plots corresponding to the standard multivariate Gaussian scaled using A1.

The third case will have the same plot as the first one, except that the samples will be rotated. The fourth case
corresponds to composing scaling the rotation.

Figure 1.7: Plots corresponding to the standard multivariate Gaussian scaled using A2A1.
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It is clear now that for every invertible matrix we can obtain a different Gaussian distribution. Because of the de-
composition of positive definite matrices into Σ = UΛU> discussed before, we can also see that every Gaussian
distribution corresponds to a linear transformation of the standard Gaussian distribution. Indeed, we can simply con-
sider the entry-wise squared-root of Λ, L = Λ1/2 and define A = UL, then Σ = AA>, and A is the linear (invertible)
transformation applied to the standard normal.
We can state further properties of the multivariate Gaussian distribution regarding its level curves, defined as:

Cλ = {x|N (x;µ,Σ) = λ}. (1.19)

These level curves are:

• For λ < 0, Cλ = ∅.

• For λ = 0, C0 = {µ}.

• For λ > 0, Cλ? is an ellipsoid with centerµ, axis given by the columns of U and axis length given by the elements
in Λ, where Σ = UΛU>. See the figures above.

1.2.3 Properties of Multivariate Gaussians
Deriving Maximum Likelihood Estimators for Multivariate Gaussians In order to derive maximum likelihood esti-
mators for the parameters of the multivariate Gaussian distribution, we need to know how to take derivatives w.r.t.
vectors and matrices. We will use some results from the matrix cookbook [1]. Useful formulae:

∂Tr(MA)

∂M
= A>

∂Tr(B>M>CMB)

∂M
= C>MBB> + CMBB> (1.20)

∂ log |M|
∂M

= (M−1)> [Tr(ABC) = Tr(BCA) = Tr(CAB)] (1.21)

Exercise 1.7: Prove that the ML estimators of the multivariate Gaussian are:

µ∗ =
1

N

N∑
n=1

xn Σ∗ =
1

N

N∑
n=1

(xn − µ∗)(xn − µ∗)>. (1.22)

The shape is all you need

Remark 1.5: By developing the expression of the multivariate Gaussian distribution:

N (x;µ,Σ) =
1√
|2πΣ|

exp
(
− 1

2
(x− µ)>Σ−1(x− µ)

)
x∝ exp

(
− 1

2
x>Σ−1x + x>Σ−1µ

)
, (1.23)

we observe that only two terms depend on x. Both are in the exponential: one is quadratic and the other is linear.

The notation x∝ means that is proportional up to a constant that does NOT depend on x. This notation will be very
useful along these notes. In other words, as long as the shape of the distribution is exponential with a quadratic and
a linear term on the random variable, then the distribution is Gaussian. The only constraint is that the quadratic term
must have negative signe and the matrix should be symmetric and positive definite.

Exercise 1.8: Prove that given a symmetric and positive definite matrix Ω and a vector m, a probability distribution of
the form:

p(x)
x∝ exp

(
− 1

2
x>Ωx + x>m

)
(1.24)

corresponds to a multivariate Gaussian distribution with the following covariance matrix and mean vector:

Σ = Ω−1 µ = Σm = Ω−1m. (1.25)

More on multivariate Gaussians in Chapter 4.
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1.3 Latent Variables and Conditional Independence

1.3.1 Introduction
We will be using models between variables. In our case this model describes the relationships between two or more
variables, see Figure 1.8. In practice this means that we choose:

• the nature of z & x: cont./discrete, bounded, ...

• the dependencies, i.e. p(x, z) = p(x|z)p(z).

• the prior distribution p(z).

• the likelihood distribution p(x|z).

Z

X

Figure 1.8: Simple model with two variables.

Remark 1.6: For the rest of the courses, we will make the difference between observed and latent or hidden variables.
Observed variables are the samples obtained via measuring a system, and latent variables are quantities that cannot
be measured directly.

For instance, in the clustering task, the observations are the positions of the data points in the RD space (measured),
and the latent variables are the class index of each of the samples (not observed). Usually, x will denote the observa-
tion variable and z the hidden or latent variable.

Remark 1.7: The two classical questions in probabilistic models with latent variables, once the prior and likelihood
distributions are defined are the marginal distribution of x (left) and the posterior distribution of z given x (right):

p(x) =

∫
Z
p(x|z)p(z)dz p(z|x) =

p(x|z)p(z)

p(x)
(1.26)

Formally, both p(z) and p(x) aremarginal distributions. Because of the sense of the dependency, the former is referred
to as the marginal, while the latter as the prior. The same happens with p(z|x) and p(x|z): both are conditional or
posterior distributions, but their name is different because of the sense of the dependency.

Example: GaussianMixtureModel The one-dimensional Gaussianmixture model (GMM) can be defined as follows:

• The nature: z is discrete & bounded, x is 1D & continuous.

• The dependencies are: p(x, z) = p(x|z)p(z).

• The prior distribution p(z), z ∈ {1, . . . ,K} is categorical:

p(z = k) = πk, πk ≥ 0,

K∑
k=1

πk = 1. (1.27)

• The likelihood distribution p(x|z) is Gaussian:

p(x|z = k) = N (x;µk, νk) =
1√

2πνk
exp

(
− (x− µk)2

2νk

)
(1.28)

with µk ∈ R and νk > 0, ∀k.

Exercise 1.9: Prove that given the prior and likelihood distributions of the GMM, the marginal writes:

p(x) =

K∑
k=1

πk
1√

2πνk
exp

(
− (x− µk)2

2νk

)
. (1.29)
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Exercise 1.10: Prove that given the prior and likelihood distribution of the GMM, the posterior writes:

p(z = k|x) =
πk

1√
2πνk

exp
(
− (x−µk)2

2νk

)
∑K
m=1 πm

1√
2πνm

exp
(
− (x−µm)2

2νm

) . (1.30)

More on this on the Chapter 2.

1.3.2 Conditional Independence
We will start study conditional independence with the smallest model that can be used: 3 variables. There are four
types of 3-variable models, as depicted in Figure 1.9:

Full all dependencies are set:
p(x, y, z) = p(z|x, y)p(y|x)p(x) (1.31)

Two-kids y → z dependency missing:
p(x, y, z) = p(z|x, y)p(y|x)p(x) (1.32)

Two-parents x→ y dependency missing:

p(x, y, z) = p(z|x, y)p(y|x)p(x) (1.33)

Cascaded x→ z dependency missing:
p(x, y, z) = p(z|x, y)p(y|x)p(x) (1.34)

X

Z

Y X

Z

Y X

Z

Y X

Z

Y

Figure 1.9: Three-variable models, from left to right: Full (all dependencies are used), Two-kids (y → z dependency
missing), Two-parents (x→ y dependency missing) and Cascaded (x→ z dependency missing).

We will let aside the Full model, since we are interested in understanding the imapct of the missing dependencies.
Let’s analyse the Two-kids model in depth.

Exercise 1.11: Prove that in the Two-kids model:

p(y|z) 6= p(y) and p(y|z, x) = p(y|x) (1.35)

The first statement is equivalent to say that y and z are not independent. The second statement, however, says that
y and z are conditionally independent w.r.t. x. Let us repeat a similar analysis with the Two-parents model.

Exercise 1.12: Prove that in the Two-parents model:

p(y|x) = p(x) and p(x|y, z) 6= p(x|z). (1.36)

We are in the opposite case. The first statement says that y and x are independent, while the second statement says
that y and x are conditionally dependent w.r.t. z. We will repeat this analysis for the Cascaded model.

Exercise 1.13: Prove that in the Cascaded model:

p(x, z) 6= p(x)p(z) and p(x, z|y) = p(x|y)p(z|y). (1.37)

In this case, we obtain similar results than with the Two-kids model.
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Remark 1.8: At this point it should be clear that independence and conditional independence are two very different
properties of random variables.

Remark 1.9: Let x, y, and z be random variables, we say that x and y are conditionally independent given z, and write
x ⊥⊥ y | z, iff one of the following equivalent expressions holds:

• p(x, y|z) = p(x|z)p(y|z)

• p(x|y, z) = p(x|z)

• p(y|x, z) = p(y|z)

1.3.3 D-separation
Let’s consider the following variables and dependencies.

C D

P

H T

JJ C

CO2V CO2

F

Is P ⊥⊥ V | T ? How would you do it ? Is the previous strategy scalable ? Let us recall the 3-variable models:

C

A

B A

B

C A B

C

Figure 1.10: Recalling the 3-variable models with new variable names. From left to right: two-kids, cascaded and
two-parents.

Two-kids The path from a to b is called “tail-to-tail.”

p(a, b|c) = p(a|c)p(b|c) (1.38)

Cascaded The path from a to b is called “head-to-tail.”

p(a, b|c) = p(a|c)p(b|c) (1.39)

Two-parents The path from a to b is called “head-to-head.”

p(a, b|c) 6= p(a|c)p(b|c) (1.40)

⇒ If A ⊥⊥ B |C , nodes within tail-to-tail or head-to-tail can be in C and nodes within head-to-head or any of their
descendents must not be in C.

Remark 1.10: Let A, B and C be three non-intersecting sets of nodes of a directed acyclic graph. A path from A to B
is said to be blocked by C if it includes a node that either:

• the path meets tail-to-tail or head-to-tail at the node and the node is in C;

• the path meets head-to-head at the node and neither the node nor any of its descendants are in C.
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Exercise 1.14: Regarding the graphical model in Figure 1.11, please answer the following questions:

1. Is the path from {x} to {v} blocked by {u}?

2. Is the path from {x} to {v} blocked by {y}?

3. Is the path from {x} to {v} blocked by {z}?

4. Is the path from {y} to {v} blocked by {u}?

X

Y

U

V

Z

Figure 1.11: Example of graphical model to discuss path blocking.

Remark 1.11: Let A, B and C be three non-intersecting sets of nodes of a directed acyclic graph. A and B are D-
separated by C , if all paths from any node from A to B are blocked by C.

Exercise 1.15: Regarding the graphical model in Figure 1.11, please answer the following questions:

• Is {x} D-separated from {v} by {u}?

• Is {x} D-separated from {v} by {y}?

• Is {x} D-separated from {v} by {y, u}?

Remark 1.12: A and B are D-separated by C if and only if A ⊥⊥ B|C.

1.3.4 Markovian Structures

Xt-1 Xt Xt+1 Xt-1

Yt-1

Xt

Yt

Xt+1

Yt+1

Xt-1

Yt-1

Xt

Yt

Xt+1

Yt+1

Zt-1 Zt Zt+1

Figure 1.12: Examples ofmodels withMarkovian dependencies, from left to right: Markov chain, hiddenMarkovmodel,
double hidden Markov model.
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Exercise 1.16: For each of the three Markov models shown below, is {xt−1} D-separated from {yt+1} by:

1. {xt}?

2. {yt}?

3. {xt, yt}?

Xt-1

Yt-1

Xt

Yt

Xt+1

Yt+1

Xt-1

Yt-1

Xt

Yt

Xt+1

Yt+1

Xt-1

Yt-1

Xt

Yt

Xt+1

Yt+1

Remark 1.13: Given a directed acyclic graph representing a probabilitic model, with random variable set Ω, for any
given random variable x ∈ Ω, its Markov blanket (or boundary) is defined as the smallest subset Bx of Ω such that:

p(x|Ω/x) = p(x|Bx) (1.41)

Exercise 1.17: Given the probabilistic graphical model shown below, identify Bk , Bl, Bc, Be.

A B C D

E
F G

H

I J K
L

Remark 1.14: Construction of the Markov blanket. Given a directed acyclic graph, and a node x on that graph, the
Markov blanket of x, Bx is the set of all parents, children and co-parents of x.

Solutions to the Exercises

Solution to Exercise 1.1: In order to find the optimal value of the parameters in the maximum likelihood, we first
develop the expression of L:

L(µ, ν|X) =

N∑
n=1

logN (xn;µ, ν) =

N∑
n=1

log
1√
2πν

− (xn − µ)2

2ν
= −N

2
log(2πν)− 1

2ν

N∑
n=1

(xn − µ)2 (1.42)

And then compute ∂L
∂µ

and ∂L
∂ν

:

∂L
∂µ

=
1

ν

N∑
n=1

(xn − µ)
∂L
∂ν

= −N
2ν

+
1

2ν2

N∑
n=1

(xn − µ)2 (1.43)

By setting the derivatives to zero:

µ∗ =
1

N

N∑
n=1

xn ν∗ =
1

N

N∑
n=1

(xn − µ∗)2. (1.44)
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Solution to Exercise 1.2: By developping the log-likelihood, we can easily observe that the total log-likelihood is the
sum of D terms, one corresponding to each dimension of the observations. Therefore the ML values of mu and ν
can be computed per-dimension, and the univariate ML estimator formulae can be used.

Solution to Exercise 1.3: Just write things down.

Solution to Exercise 1.4: As explained, all eigenvalues of a symmetric and positive definite matrix are positive.
Therefore, the determinant is strictly positive, since it is the product of the eigenvalues. Since the determinant is not
zero, the matrix is invertible.

In addition, the eigenvalues of the inverse matrix correspond to the inverse of the eigenvalues of Σ, and they will all
be positive. Since the inverse will also be symmetric, then the inverse of a symmetric and positive definite matrix is
also symmetric and positive definite.

Solution to Exercise 1.5: The trick is to start by using the decompositionΣ = UΛU>, whereΛ is diagonal with strictly
positive entries, and U is orthogonal. We then consider L = Λ1/2, meaning the entry-wise squared root, and realise
that: Σ = ULL>U>. With this notation we can rewrite the inside of the exponential to compute the normalisation
constant:

C(Σ) =

∫
RD

exp
(
− 1

2
(x− µ)>Σ−1(x− µ)

)
dx (1.45)

=

∫
RD

exp
(
− 1

2
(x− µ)>UL−1L−1U>(x− µ)

)
dx (1.46)

= |L|
∫
RD

exp
(
− 1

2
y>y

)
dy (1.47)

= |Σ|1/2(2π)D/2 (1.48)
= |2πΣ|1/2, (1.49)

where we used the change of variables y = L−1U>(x − µ), leading to dy = |L|−1dx (where we used that U is
orthogonal).

Solution to Exercise 1.6: By definition, we have that z = A−1(x− µ). By taking the definition of the standard normal
distribution, we write:

exp
(
− 1

2
z>z

)
= exp

(
− 1

2
(x− µ)>A−>A−1(x− µ)

)
= exp

(
− 1

2
(x− µ)>(AA>)−1(x− µ)

)
. (1.50)

By setting Σ = AA> we conclude the proof (notice that the normalisation coefficient must be adapted following the
variable change, as in Exercise 1.5.

13



Solution to Exercise 1.7: By considering a set of i.i.d. observations X = {x1, . . . ,xN}, we can develop the log-
likelihood:

L(µ,Σ|X) =

N∑
n=1

logN (xn;µ,Σ) (1.51)

=

N∑
n=1

−D
2

log(2π)− 1

2
log |Σ| − 1

2
(xn − µ)>Σ−1(xn − µ) (1.52)

= −1

2

(
DN log(2π) +N log |Σ|+

N∑
n=1

(xn − µ)>Σ−1(xn − µ)
)
. (1.53)

We now focus on the last term, and redevelop it as follows:

(xn − µ)>Σ−1(xn − µ) = Tr
(
(xn − µ)>Σ−1(xn − µ)

)
= Tr

(
Σ−1(xn − µ)(xn − µ)>

)
, (1.54)

where we used the circular property of the trace. Regarding the optimal value of µ, we can use the other derivative
formulae shown in the main text and write:

∂L
∂µ

=

N∑
n=1

Σ−1
(
xn − µ) = 0⇔ µ∗ =

1

N

N∑
n=1

xn. (1.55)

We are now ready to take the derivative w.r.t. Σ. We will actually take the derivative w.r.t. Σ−1:

∂L
∂(Σ−1)

= NΣ−
N∑
n=1

(xn − µ)(xn − µ)> = 0⇔ Σ∗ =
1

N

N∑
n=1

(xn − µ∗)(xn − µ∗)>. (1.56)

Solution to Exercise 1.8: In order to prove this, we will first notice that the quadratic term has to be associated to the
covariance distribution, hence: Σ = Ω−1, leading to:

p(x)
x∝ exp

(
− 1

2
x>Σ−1x + x>m

)
. (1.57)

We can now multiply the linear term by Σ−1Σ:

p(x)
x∝ exp

(
− 1

2
x>Σ−1x + x>Σ−1Σm

)
. (1.58)

By setting µ = Σm we obtain:
p(x)

x∝ exp
(
− 1

2
x>Σ−1x + x>Σ−1µ

)
. (1.59)

By multiplying the right-hand side of the above expression by |2πΣ|1/2 exp(−µ>Σ−1µ/2), which is a constant that
does not depend on x we end up with:

p(x) = N (x;µ,Σ). (1.60)

Solution to Exercise 1.9: The definition of the marginal distribution writes:

p(x) =

∫
Z
p(x|z)p(z)dz =

K∑
k=1

p(x|z = k)p(z = k). (1.61)

And then we replace:

p(x) =

K∑
k=1

πk
1√

2πνk
exp

(
− (x− µk)2

2νk

)
. (1.62)

Solution to Exercise 1.10: Use the Bayes rule, and write down the definitions and the previously computed marginal
distribution.
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Solution to Exercise 1.11: Let us write what the equality would imply:

p(y|z) =
p(y, z)

p(z)
=

∫
X p(x, y, z)dx

p(z)
=

∫
X p(z|x)p(y|x)p(x)dx

p(z)

?
=

∫
X
p(y|x)p(x)dx = p(y). (1.63)

In other words, it would imply that p(z|x) = p(z), ∀x, meaning that z is independent of x, which is against the model
definition. Regarding the second statement:

p(y|z, x) =
p(y, z, x)

p(z, x)
=
p(y|x)p(z|x)p(x)

p(z|x)p(x)
= p(y|x). (1.64)

Solution to Exercise 1.12: Regarding the first statement:

p(y|x)p(x) = p(y, x) =

∫
Z
p(z, x, y)dz = p(x)p(y)

∫
Z
p(z|x, y)dz = p(x)p(y)⇒ p(y|x) = p(y). (1.65)

Regarding the second statement, we impose the equality:

p(x|y, z) =
p(x, y, z)

p(y, z)
=

p(z|y, x)p(x)p(y)

p(y)
∫
X p(z|y, x)p(x)dx

?
= p(x|z), (1.66)

which implies that p(z|y, x) does not depend on y and is contrary to the model.

Solution to Exercise 1.13: Regarding the first statement:

p(x, z) =

∫
Y
p(x, y, z)dy =

∫
Y
p(z|y)p(y|x)p(x)dx = p(x)

∫
Y
p(z|y)p(y|x)dy

?
= p(x)p(y), (1.67)

which implies that p(y|x) does not depend on x. Regarding the second statement:

p(x, z|y) =
p(x, z, y)

p(y)
=
p(z|y)p(y|x)p(x)

p(y)
= p(x|y)p(z|y). (1.68)

Solution to Exercise 1.14: 1. Yes, 2. No, 3. No, 4. Yes.

Solution to Exercise 1.15: 1. Yes, 2. No, 3. Yes.

Solution to Exercise 1.16: With the left model: 1.Yes, 2. No, 3. Yes. With the center model: 1. No, 2. Yes, 3. Yes. With
the right model: 1. No, 2. No, 3. Yes.

Solution to Exercise 1.17: The isolated variables are shown and their associated Markov blanket in purple.

A B C D

E
F G

H

I J K
L

A B C D

E
F G

H

I J K
L

A B C D

E
F G

H

I J K
L

A B C D

E
F G

H

I J K
L
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Chapter 2

Gaussian Mixture Models

2.1 Motivation: Clustering
Suppose you are given the set of points in the left hand side of Figure 2.1, and you are asked to devise an algorithm
to automatically findK clusters. One option is the following:

1. Initialise randomlyK centroids.

2. Assign each data point to the closes centroid.

3. Recompute centroids from the assignments.

4. Iterate the past two steps.

This is called theK-means algorithm, and it results on the color-coded assignment shown in the center of Figure 2.1.

Figure 2.1: Clustering example.

Important properties of theK-means algorithm:

• Automatic inference of latent variables. The point-to-cluster assignment variable is unknown/latent/hidden,
and must be infered together with the parameters.

• Limited to spherical and equally populated clusters. Because the assignment criterion is the Euclidean dis-
tances, see the right hand side of Figure 2.1.

Remark 2.1: Gaussian mixture model (GMM):

• For each data point xn there is a hidden variable zn taking discrete values from 1 toK: zn ∈ {1, . . . ,K}.

• Its prior probability is defined as: p(zn = k) = πk ,
∑K
k=1 πk = 1.

• Given zn, the data point is modeled as a multivariate Gaussian:

p(xn|zn = k) = N (xn;µk,Σk) (2.1)

Advantages:

1. Having π1, . . . , πK means that groups can be differently populated.

2. The shape of the groups is modeled by Σk.
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2.2 Maximum Likelihood for GMM: the Expectation-Maximisation algorithm
Let’s compute p(xn):

p(xn) =

K∑
k=1

p(xn, zn = k) =

K∑
k=1

πkN (xn;µk,Σk). (2.2)

The log-likelihood writes:

L(Θ|X) =

N∑
n=1

log

K∑
k=1

πkN (xn;µk,Σk), (2.3)

with Θ = {πk,µk,Σk}Kk=1. One can easily check by computing ∂L
∂πk

, ∂L
∂µk

or ∂L
∂Σk

that direct optimisation is very

complicated.

Notice that log p(x) is not a nice function to take the derivative of, but that log p(x, z) is. However, z is not observed
and we need to take some sort of expectation. We will do that w.r.t. the posterior distribution, and this choice will be
justified later on.

Remark 2.2: The expected complete-data log-likelihood writes:

Q(Θ,Θ0) = Ep(z|x;Θ0) log p(x, z; Θ) (2.4)

Remark 2.3: We can now propose the EM algorithnm for GMM, with some notation first: observations X = {xn}Nn=1,
latent variables Z = {zn}Nn=1 and parameters Θ = {πk,µk,Σk}Kk=1. Given Θ0, we use the expected complete-data
log-likelihood Q:

1. Expectation:
Q(Θ,Θ0) = Ep(Z|X;Θ0) log p(Z,X; Θ) (2.5)

2. Maximisation:
Θ1 = arg max

Θ
Q(Θ,Θ0) (2.6)

We can look back toK-means:
1. Infer latent variables (assignment) given the parameters (centroids).

2. Estimate the parameters (centroids) given the assignments.

Algorithm K-means EM for GMM
Criterion Sum Euclidean distance to assigned cluster center Expected complete-data log-likelihood
Inference Optimal hard-assignment Posterior distribution of zn
Param. Est. Cluster centroids Optimise for Θ

To derive the expectation (E) and maximisation (M) steps, of the EM algorithm, we recall: p(zn = k) = πk and
p(xn|zn = k) = N (xn;µk,Σk).

2.2.1 The Expectation Step
Compute Q(Θ,Θ0) = Ep(Z|X;Θ0) log p(Z,X; Θ).

• Start with p(zn = k|xn; Θ0). And name it ηnk = p(zn = k|xn; Θ0). ηnk is the posterior probability that xn belongs
to group k.

• Then p(xn, zn|Θ) = πkN (xn;µk,Σk).

• Also Ep(zn|Zn;Θ0) log p(zn,xn; Θ) =
∑K
k=1 ηnk log πkN (xn;µk,Σk).

Remark 2.4: In the case of Gaussian mixture models, the expected complete-data log-likelihood writes:

Q(Θ,Θ0) =

N∑
n=1

K∑
k=1

ηnk log πkN (xn;µk,Σk). (2.7)
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2.2.2 The Maximisation Step
The exected complete-data log-likelihood splits:

Q(Θ,Θ0) =

N∑
n=1

K∑
k=1

ηnk log πk + ηnk logN (xn;µk,Σk). (2.8)

We consider now the Lagrangian for π1, . . . , πK :

Q(Θ,Θ0) =

N∑
n=1

K∑
k=1

ηnk log πk + β
(

1−
K∑
k=1

πk

)
. (2.9)

Exercise 2.1: By computing the derivatives of the previous function, prove that:

π∗k =
1

N
Sk, Sk =

N∑
n=1

ηnk, (2.10)

and

µ∗k =
1

Sk

N∑
n=1

ηnkxn Σ∗k =
1

Sk

N∑
n=1

ηnk(xn − µ∗k)(xn − µ∗k)>. (2.11)

2.3 The EM algorithm in general
Let us assume a probabilistic graphical model, with observed variables X, hidden variables z and parameters Θ.

Remark 2.5: Initialise the parameters Θ0. For iteration r = 1, . . . , R:

E-step Compute p(z|X; Θr−1) and Q(Θ,Θr−1).

M-step Compute Θr = arg maxΘQ(Θ,Θr−1).

Comments

• EM is sensible to initialisation.

• It may converge to a local maxima or saddle point.

• We still need to compute and optimise Q(Θ,Θr−1).

Why does the EM work? The main mathematical object in EM is Q (the expected complete-data log-likelihood). In
order to study the relationship with the log-likelihood, we consider any distribution of z: q(z) and ignore Θ for the time
being.

log p(x) = Eq(z)

[
log p(x)

]
(2.12)

= Eq(z)

[
log p(x)

p(z|x)q(z)

p(z|x)q(z)

]
(2.13)

= Eq(z)

[
log

p(x)p(z|x)

q(z)

]
+DKL

(
q(z)

∥∥∥p(z|x)
)

(2.14)

We therefore obtain:

log p(x; Θ) = Eq(z)

[
log

p(x)p(z|x)

q(z)

]
︸ ︷︷ ︸

M-step

+DKL

(
q(z)

∥∥∥p(z|x)
)

︸ ︷︷ ︸
E-step

, (2.15)

whereDKL stands for the Kullback-Leibler divergence, and is always positive. In these terms, the EM can be interpreted
as follows, for a given Θ0:

1. Set q(z) = p(z|x; Θ0).

2. Optimise Eq(z)

[
log p(x,z;Θ)

q(z)

]
w.r.t. Θ.
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By running the E-step (step 1), we makeDKL = 0, and therefore the expected complete-data log-likelihood becomes a
tight lower bound of the log-likelihood. The M-step (step 2), thus optimises directly the log-likelihood. In other words:

E-step reduce the distance between log-likelihood and Q.

M-step push Q and therefore push the log-likelihood.

A graphical representation of this phenomenon can be found in the following figure with the following notations:

log p(x; Θ) = Eq(z)

[
log

p(x)p(z|x)

q(z)

]
︸ ︷︷ ︸

L(q,Θ)

+DKL

(
q(z)

∥∥∥p(z|x)
)

︸ ︷︷ ︸
KL(q‖p)

Solutions to the Exercises

Solution to Exercise 2.1: For µk and Σk re-use the same strategy used for the ML estimators of a multivariate Gaus-
sian distribution in Chapter 1, see Exercise 1.7. Regarding the πk , we need to compute the derivative:

∂Q

∂πk
=

N∑
n=1

ηnk
1

πk
− β. (2.16)

By setting the derivative to zero, we obtain:

πk =
1

β

N∑
n=1

ηnk, (2.17)

and we recall that
∑
k πk = 1, thus:

1 =

K∑
k=1

πk =
1

β

K,N∑
k,n=1

ηnk =
N

β
⇒ π∗k =

1

N

N∑
k=1

ηnk. (2.18)
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Chapter 3

Hidden Markov Models

(Empty)
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Chapter 4

Probabilistic Principal Component Analysis

4.1 From Discrete to Continuous Latent Variables
So far we have studied probabilistic models with discrete latent variables, that is z ∈ {1, . . . ,K}. In particular we have
discussed the Gaussian mixture model and the hidden Markov model, depicted in Figure 4.1.

z

x

zt−1 zt zt+1

xt−1 xt xt+1

Figure 4.1: Graphical representation of a GMM (left) and an HMM (right).

In the following courses we will discuss models with continuous z. This means that z ∈ R. The continuous equivalent
of GMM is called probabilistic principal component analysis (PPCA), and the one corresponding to HMM is called
Linear Dynamical System (LDS) and will be discussed in Chapter 5.

4.2 The PPCA Model
The PPCA model uses some of the concepts and intuitions around the multivariate Gaussian distribution discussed
in Chapter 1. From a graphical perspective it is the same as GMM (left of Figure 4.1), but the nature of the random
variables and their interdependencies change.

Remark 4.1: The PPCA model is characterised by:

• Two continuous variables, one hidden one observed. Traditionally, z ∈ RdZ and x ∈ RdX denote the hidden and
observed dimensions, and dZ � dX.

• The prior on the latent variable is a standard Gaussian:

p(z) = N (z; 0, I). (4.1)

• The conditional likelihood is a multivariate Gaussian:

p(x|z) = N (x; Az + b, νI). (4.2)

Exercise 4.1: What is the number of free parameters of the PPCA model?

Alternatively, one can write x = Az + b + ε with ε ∼ N (ε; 0, νI), being ε and z independent. An example of the
generative process of PPCA can be found in Figure 4.2.
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Figure 4.2: Example of the generative process of PPCA. From left to right. We first generate the low-dimensional latent
variable z, which gets multiplied by the linear operator A, and added the bias b, before adding the high-dimensional
noise ε, to obtain the observations x.

Exercise 4.2: Prove that, given the PPCAmodel, themarginal ofx hasmean vectorb and covariancematrixAA>+νI.

Exercise 4.3: Prove that the shape of themarginal distribution p(x) corresponds to the one of amultivariate Gaussian.
To do so, first prove that the joint distribution in x and z can be expressed as:

p(x, z)
x,z∝ exp

(
−1

2

[
‖x− b‖2

ν
−m>Ω−1m

])
N (z; m,Ω), (4.3)

with

Ω =

(
A>A

ν
+ I

)−1

m = Ω

(
A>(x− b)

ν

)
. (4.4)

While it is clear from the previous equation that the mean of the marginal distribution is b, understanding that the
corresponding covariance matrix is what was found in Exercise 4.2 is not trvial. You might use the Woodbury matrix
inversion lemma:

Remark 4.2: For matrices D ∈ Rn×n, U ∈ Rn×m, C ∈ Rm×m and V ∈ Rm×n, the following identity holds:

(D + UCV)−1 = D−1 −D−1U(C−1 + VD−1U)−1VD−1. (4.5)

Exercise 4.4: Prove the Woodbury matrix inversion lemma.

4.3 Expectation-Maximisation for PCCA
We will now derive the EM algorithm for PPCA. The parameters of the model are Θ = {A,b, ν}. As usual, the EM will
provide a way to estimate these parameters provided a set of data X = {x1, . . . ,xN}. For each of these data points,
we assume the existence of a low-dimensional hidden random variable zn, and write Z = {z1, . . . , zN}.

Given an initialisation of the parameter set, Θ̄ = {Ā, b̄, ν̄}, the EM algorithm considers the expecteded complete-data
log-likelihood:

Q(Θ, Θ̄) = Ep(Z|X;Θ̄) log p(X,Z; Θ) =

N∑
n=1

Ep(zn|xn;Θ̄) log p(xn, zn; Θ). (4.6)

We already know that the posterior distribution is a Gaussian distribution that writes:

N (zn; m̄n, Ω̄), with Ω̄ =

(
Ā
>

Ā

ν̄
+ I

)−1

and m̄n = Ω̄

(
Ā
>

(xn − b̄)

ν̄

)
. (4.7)

In order to compute the expecation in Q, we need the following result.

Exercise 4.5: The following two formulae hold:

EN (z;µ,Σ) {Az} = Aµ and EN (z;µ,Σ)

{
z>Λz

}
= µ>Λµ + Tr(ΛΣ). (4.8)
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4.3.1 E-step
We are now ready to derive the E-step of the EM algorithm for PPCA:

Exercise 4.6: Show that the n-th term of the sum of the Q function for PPCA writes:

EN (zn;m̄n,Ω̄) {logN (xn; Azn + b, νI)N (zn; 0, I)} Θ
= −1

2

(
dX log ν +

1

ν
‖xn −Am̄n − b‖2 +

1

ν
Tr(A>AΩ̄)

)
, (4.9)

where the notation Θ
= means equality up to an additive constant that does not depend on Θ.

Therefore the Q function for PPCA writes:

Q(Θ, Θ̄)
Θ
= −N

2

(
dX log ν +

1

ν
Tr(A>AΩ̄) +

1

Nν

N∑
n=1

‖xn −Am̄n − b‖2
)
, (4.10)

4.3.2 M-step
By taking the derivative of Q w.r.t. the parameters in Θ, obtain the following results.

Exercise 4.7: The optimal value for ν writes:

ν∗ =
1

dX

(
Tr(A>AΩ̄) +

1

N

N∑
n=1

‖xn −Am̄n − b‖2
)
. (4.11)

Regarding the other two parameters, nulling out their respective derivatives yields:

A = (SXM − bS>M )S−1
2 and b = SX −ASM, (4.12)

where SX = 1
N

∑N
n=1 xn ∈ RdX , SM = 1

N

∑N
n=1 m̄n ∈ RdZ , SXM = 1

N

∑N
n=1 xnm̄>n ∈ RdX×dZ , S2 = 1

N

∑N
n=1 m̄nm̄>n + Ω̄ ∈

RdZ×dZ . Thismeans that the optimal values ofA andbmust be found by solving a linear systemof equations, yielding:

A∗ = (SXM − SXS
>
M )S−1

2 (I− SmS>mS−1
2 )−1, and b∗ = SX −A∗SM. (4.13)

4.4 More on Multivariate Gaussian Distributions
We perform a deeper analysis on the multivariate Gaussians. Indeed, in Exercise 4.3 we have shown that for the
PPCAmodel, the marginal distribution on x is also a multivariate Gaussian. Another immendiate consequence of this
exercise is that the posterior distribution p(z|x) is also Gaussian.

Remark 4.3: Under the notations and assumptions of the PPCA model, the posterior distribution writes:

p(z|x)
z∝ p(z,x)

z∝ N (z; m,Ω). (4.14)

While we have proven this for the PPCA model, the formulae can be easily extended to the more general case.

Remark 4.4: The so-called linear Gaussian model, which is actually afine, is defined as:

p(z) = N (z;µ,Σ) p(x|z) = N (x; Az + b,L), (4.15)

µ ∈ RdZ , Σ ∈ RdZ×dZ , A ∈ RdX×dZ , b ∈ RdX and L ∈ RdX×dX .

Exercise 4.8: What are the number of free parameters of this model?

Under these assumptions, p(x, z), p(x) and p(z|x) are all multivariate Gaussian distributions.
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Exercise 4.9: Using the Gaussian completion, prove the following results. For the posterior distribution:

p(z|x) = N (z; m,Ω) with Ω−1 = Σ−1 + A>L−1A and m = Ω(Σ−1µ + A>L−1(x− b)). (4.16)

For the marginal distribution:
p(x) = N (x; Aµ + b,AΣA> + L). (4.17)

For the joint distribution:

p

((
x
z

))
= N

((
x
z

)
;

(
L−1b

Σ−1µ + A>L−1b

)
,

(
L−1 L−1A

A>L−1 Σ−1 + A>L−1A

))
(4.18)

Solutions to Exercises

Solution to Exercise 4.1: The model has dZdX free parameters for A, dX free parameters for b and one for ν , so a total
of (dZ + 1)dX + 1.

Solution to Exercise 4.2: By direct computation:

E{x} = E{Az + b + ε} = b, (4.19)

since the two Gaussians are independent with null mean vector. Regarding the covariance matrix:

E{(x− b)(x− b)>} = E{(Az + ε)(Az + ε)>} = AA> + νI, (4.20)

where we have used the independence properties and the covariances of z and ε.

Solution to Exercise 4.3: In order to do that we write:

p(x) =

∫
Z
p(x|z)p(z)dz. (4.21)

By writing the joint, we observe:

p(x, z)
x∝ exp

(
− 1

2ν
‖x−Az− b‖2

)
exp

(
− 1

2
‖z‖2

)
(4.22)

x∝ exp

(
−1

2

[
‖x− b‖2

ν
+
‖Az‖2

ν
− 2z>A>(x− b)

ν
+ ‖z‖2

])
(4.23)

x∝ exp
(
− 1

2ν
‖x− b‖2

)
exp

(
−1

2

[
z>

(
A>A

ν
+ I

)
z− 2z>

A>(x− b)

ν

])
(4.24)

The Gaussian on z can be completed with:

Ω =

(
A>A

ν
+ I

)−1

m = Ω

(
A>(x− b)

ν

)
(4.25)

thus obtaining:

p(x, z)
x∝ exp

(
−1

2

[
‖x− b‖2

ν
−m>Ω−1m

])
N (z; m,Ω), (4.26)

which concludes the proof (why?).

Solution to Exercise 4.4: Just multipy the right hand side expression by the left hand side expression (without the
inverse) and simplify to obtain the identity.
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Solution to Exercise 4.5: The key property is that expectations commute with linear operators such as matrix multi-
plication and the trace:

EN (z;µ,Σ) {Az} = AEN (z;µ,Σ) {z} = Aµ (4.27)

and:

EN (z;µ,Σ)

{
z>Λz

}
= EN (z;µ,Σ)

{
Tr(z>Λz)

}
(4.28)

= EN (z;µ,Σ)

{
Tr(Λzz>)

}
(4.29)

= Tr(ΛEN (z;µ,Σ)

{
zz>

}
) (4.30)

= Tr(Λ(µµ> + Σ)) (4.31)
= µ>Λµ + Tr(ΛΣ). (4.32)

Solution to Exercise 4.6: Use the formulae before, and get rid of all terms that do not depend on Θ.

Solution to Exercise 4.7: The optimal value for ν can be obtained by taking the derivative:

∂Q
∂ν

= −1

2

(
NdX
ν
− 1

ν2

(
NTr(A>AΩ̄) +

N∑
n=1

‖xn −Am̄n − b‖2
))

, (4.33)

from what it follows that:

∂Q
∂ν

= 0 ⇒ ν∗ =
1

dX

(
Tr(A>AΩ̄) +

1

N

N∑
n=1

‖xn −Am̄n − b‖2
)
. (4.34)

Regarding the other two parameters, you need to use the derivatives w.r.t. matrices. Nulling out these derivatives
yields:

A = (SXM − bS>M )S−1
2 and b = SX −ASM, (4.35)

where SX = 1
N

∑N
n=1 xn ∈ RdX , SM = 1

N

∑N
n=1 m̄n ∈ RdZ , SXM = 1

N

∑N
n=1 xnm̄>n ∈ RdX×dZ , S2 = 1

N

∑N
n=1 m̄nm̄>n + Ω̄ ∈

RdZ×dZ . Thismeans that the optimal values ofA andbmust be found by solving a linear systemof equations, yielding:

A∗ = (SXM − SXS
>
M )S−1

2 (I− SmS>mS−1
2 )−1, and b∗ = SX −A∗SM. (4.36)

Solution to Exercise 4.8: It’s dZ for µ, dX for b, dZ × dX for A. For the covariance matrices we have dZ(dZ + 1)/2 for Σ
and dX(dX + 1)/2 for L, since they are symmetric.

Solution to Exercise 4.9: It’s somewhat long to write, but it only needs to be written.
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Chapter 5

Linear dynamical systems

Linear dynamical systems are composed of a hidden variable with a temporal structure, and an observation. They are
very similar to hidden Markov models, with the very important difference that the hidden variable is continuous. LDS
are to PPCA what HMM are to GMM.

Discrete Continuous

No Temporal GMM p(z = k) = πk PPCA p(z) = N (z; 0, I)

Temporal HMM p(zt = k|zt−1 = j) = τjk LDS p(zt|zt−1) = N (zt; Azt−1,Γ)

In more detail the equations defining the model are:

p(z1) = N (z1; d,Ω), p(zt|zt−1) = N (zt; Azt−1,Γ), p(xt|zt) = N (xt; Czt,Σ), (5.1)

where Ω, Γ and Σ are covariance matrices.

Exercise 5.1: What is the dimension of the free parameters of the model?

5.1 Structured Multivariate Gaussians
Before going through the EM, we will be discussing properties of the multivariate Gaussian distribution. We forget
for a while about the sequences and consider now the concatenation of x and z: y = [x>, z>]>, y ∈ Rdx+dz . We
have seen that if p(z) is a Gaussian, and p(x|z) is a linear-Gaussian, then the joint distribution on y = [x>, z>]> is a
Gaussian as well. But is the opposite true?

If we write p(y) = N (y;µy,Σyy) then we can write:

µy =

(
µx
µz

)
Σyy =

(
Σxx Σxz

Σzx Σzz

)
(5.2)

Wewould like to derive properties of p(z) and p(x|z) from p(y). In order to evaluateN (y;µy,Σyy), we need to compute:

Σ−1
yy =

(
Σxx Σxz

Σzx Σzz

)−1

6=
(

Σ−1
xx Σ−1

xz

Σ−1
zx Σ−1

zz

)
(5.3)

You cannot invert a matrix block-by-block. Think about how do you invert a 2× 2 matrix, or what if Σxy is not square.
We have the help of the following results.

Remark 5.1: There are two version of the block-wise inversion lemma. The first:(
A B
C D

)−1

=

(
M −MBD−1

−D−1CM D−1 + D−1CMBD−1

)
(5.4)

with M = (A−BD−1C)−1.
And the second: (

A B
C D

)−1

=

(
A−1 + A−1BNCA−1 −A−1CN

−NBA−1 N

)
(5.5)

with N = (D−CA−1B)−1.
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Exercise 5.2: Prove that both are indeed inverses of the original matrix. As a consequence they have to be equal. You
will need the Woodbory lemma.

If we apply this to p(y), the precision matrix Λyy (the inverse of Σyy) is:

Σ−1
yy = Λyy =

(
Λxx Λxz

Λzx Λzz

)
=

(
Λxx −ΛxxΣxzΣ

−1
zz

−Σ−1
zz ΣzxΛxx Σ−1

zz + Σ−1
zz ΣzxΛxxΣxzΣ

−1
zz

)
(5.6)

with Λxx = (Σxx −ΣxzΣ
−1
zz Σzx)−1.

Exercise 5.3: Use the previous expression to prove that the conditional distribution writes:

p(x|z) = N (x;µx|z,Σx|z) with Σx|z = Λ−1
xx , and µx|z = µx −Λ−1

xxΛxz(z− µz) (5.7)

Exercise 5.4: Use the previous result to prove that the marginal distribution writes:

p(z) = N (z;µz,Σzz). (5.8)

The linear-Gaussianmodel showed that two independent random variables with both marginal and conditional distri-
butions being Gaussian, then the joint is Gaussian. We now showed that if the joint is Gaussian, then both themarginal
and the conditional are Gaussians. This completes our discussion on multivariate Gaussian distributions that we will
use for deriving the EM algorithm.

5.2 Expectation Maximization for LDS
As usual we have:

• Observations: x1:T = (x1, . . . ,xT ), with xt ∈ Rdx .

• Latent variables: z1:T = (z1, . . . , zT ), with zt ∈ Rdz .

• Model parameters: Θ = {µ0,Ω,A,Γ,C,Σ}.

Given an estimate of the parameters Θ̄, the expectation-maximisation algorithm has two steps:
• Expectation: compute the auxiliar function:

Q(Θ, Θ̄) = Ep(z1:T |x1:T ;Θ̄){log p(x1:T , z1:T ; Θ)}. (5.9)

• Maximisation: of the auxiliary function Q w.r.t. Θ:

Θ∗ = arg max
Θ

Q(Θ, Θ̄), (5.10)

then set Θ̄ = Θ∗ and go back to the E-step.

5.2.1 E step
The E-step starts by deriving further the Q function. To this aim we first get the logarithm of the joint distribution (see Figure 5.1
as well):

log p(x1:T , z1:T ; Θ) = log p(x1:T |z1:T ; Θ) + log p(z1:T ; Θ) (5.11)

=

T∑
t=1

log p(xt|zt; Θ) +

T∑
t=2

p(zt|zt−1; Θ) + log p(z1; Θ) (5.12)

zt−1 zt zt+1

xt−1 xt xt+1

Figure 5.1: Graphicalmodel of a first order hiddenMarkov chain (common toHMMandLDSmodels), with the transition
and observation models highlighted in blue and green respectively.
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If we developQ:

Q = Ep(z1:T |x1:T ;Θ̄)

{
T∑
t=1

log p(xt|zt; Θ) +

T∑
t=2

p(zt|zt−1; Θ) + log p(z1; Θ)

}
(5.13)

=

T∑
t=1

Ep(zt|x1:T ;Θ̄){log p(xt|zt; Θ)} (5.14)

+

T∑
t=2

Ep(zt−1,zt|x1:T ;Θ̄){log p(zt|zt−1; Θ)}+ Ep(z1|x1:T ;Θ̄){log p(z1; Θ)}. (5.15)

In order to computeQ, we need to first compute:

p(zt|x1:T ; Θ̄) and p(zt−1, zt|x1:T ; Θ̄), ∀t. (5.16)

If we start from scratch, we write:

p(zt|x1:T ) =

∫
. . .

∫
p(z1:T |x1:T )dz1:t−1dzt+1:T (5.17)

=
1

p(x1:T )

∫
. . .

∫
p(x1:T , z1:T )dz1:t−1dzt+1:T (5.18)

=
1

p(x1:T )

∫
. . .

∫ T∏
τ=1

p(xτ |zτ )

T∏
τ=2

p(zτ |zτ−1)p(z1)dz1:t−1dzt+1:T (5.19)

This requires T − 1 integrals for every zt, so T (T − 1) integrals. We need a smarter strategy!
As in the case of HMM, we will use the forward-backward algorithm.

Main idea: decompose as a product of a forward and backward distributions that can be computed recursively and re-used at every
t:

p(zt|x1:T )
(zt)
∝ p(zt,x1:T ) = p(zt,x1:t)p(xt+1:T |zt) (5.20)

Exercise 5.5: Prove that the past dependencies drop from the backward term, or equivalently that x1:t and xt+1:T are D-separated
by zt.

We refer to p(zt,x1:t) and p(xt+1:T |zt) as the forward and backward distributions, but this is a language abuse. They are denoted
respectively by αt(zt) = p(zt,x1:t) and βt(zt) = p(xt+1:T |zt). We recall that p(zt|x1:T )

(z1:T )
∝ p(zt,x1:t)p(xt+1:T |zt), but also:

p(zt|x1:T ) =
1

p(x1:T )

∫
. . .

∫ t∏
τ=1

p(xτ |zτ )

t∏
τ=2

p(zτ |zτ−1)p(z1)dz1:t−1

∫
. . .

∫ T∏
τ=t+1

p(xτ |zτ )

T∏
τ=t+1

p(zτ |zτ−1)dzt+1:T . (5.21)

Exercise 5.6: Prove the general forward-backward recursions:

αt(zt)
4
= p(zt,x1:t) = p(xt|zt)

∫
p(zt|zt−1)p(zt−1,x1:t−1)dzt−1 = p(xt|zt)

∫
p(zt|zt−1)αt−1(zt−1)dzt−1, (5.22)

βt(zt)
4
= p(xt+1:T |zt) =

∫
p(xt+1|zt+1)p(zt+1|zt)p(xt+2:T |zt+1)dzt+1 =

∫
p(xt+1|zt+1)p(zt+1|zt)βt+1(zt+1)dzt+1. (5.23)

So we have:
• Forward Start with α1(z1) = p(z1|x1) and compute:

αt(zt) = p(xt|zt)
∫
p(zt|zt−1)αt−1(zt−1)dzt−1, ∀t. (5.24)

• Backward Start with βT−1(zT−1) = p(xT |zT−1) and compute:

βt(zt) =

∫
p(xt+1|zt+1)p(zt+1|zt)βt+1(zt+1)dzt+1, ∀t. (5.25)

• Posterior Compute p(zt|x1:T ) ∝ αt(zt)βt(zt), ∀t.
This is the exact same formulation as for HMM (we did not use the distributions of zt and xt), so this is general. With this strategy,
we need 2(T − 1) integrals, instead of T (T − 1). Differently from HMM, we need to see how these recursions look like for LDS.
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Forward & backward recursions In order to compute the forward recursion we assume that the forward distribution at the
previous time step is Gaussian (see below for initialisation).

Exercise 5.7: Let us now assume that: αt−1(zt−1) = N (zt−1;µt−1,Vt−1), prove that the recursion in 5.24 leads to a Gaussian as
follows:

αt(zt) = N (zt;µt,Vt), with

 Vt =
(
C>Σ−1C + (Γ + AVt−1A

>)−1
)−1

,

µt = Vt

(
(Γ + AVt−1A

>)−1Aµt−1 + CΣ−1xt
)
.

(5.26)

Exercise 5.8: Using similar tools than in the forward pass, and when necessary completing the quadratic form, prove that if
βt+1(zt+1) = N (zt+1;νt+1,Wt+1), then:

βt(zt) = N (zt;νt,Wt) with W−1
t = A>(Γ + (W−1

t+1 + C>Σ−1C)−1)−1A (5.27)

and
νt = WtA

>Γ−1(C>Σ−1C + W−1
t+1 + Γ−1)−1(C>Σ−1xt+1 + W−1

t+1νt+1) (5.28)

Marginal a posteriori All the previous computations were targetted to obtain the marginal a posteriori distribution:

p(zt|x1:T )
(zt)
∝ p(zt,x1:t)p(xt+1:T |zt)

(zt)
∝ N (zt;µt,Vt)N (zt;νt,Wt) (5.29)

(zt)
∝ exp

(
−1

2

[
z>t (V−1

t + W−1
t )zt − 2z>t (V−1

t µt + W−1
t νt)

])
(5.30)

(zt)
∝ N (zt; mt,Λt) (5.31)

with Λt = (V−1
t + W−1

t )−1 mt = Λt(V
−1
t µt + W−1

t νt) (5.32)

But how to initialise the recursions?

Initialisation of the recursions If we take a look to the forward at time t = 1:

α1(z1) = p(z1,x1) = p(x1|z1)p(z1) = N (x1; Cz1,Σ)N (z1; d,Ω). (5.33)

Therefore:
α1(z1) = N (z1;µ1,V1) with

{
V1 = (Ω−1 + CΣ−1C>)−1,

µ1 = V1(Ω−1d + C>Σ−1x1)
(5.34)

Regading the backward, let’s first reason with the following equation:

p(zT |x1:T )
(zT )
∝ p(zT ,x1:T )︸ ︷︷ ︸

αT (zT )

, (5.35)

meaning that actually βT (zT )
(zT )
∝ 1, and thus βT should be constant. This would be achieved if we initialise βT as a normal

with infinite covariance or zero precision W−1
T → 0, but in that case it will not propertly a normal. However, we can compute the

parameters of βT−1 that correspond to this choice:

W−1
T → 0⇒

{
W−1

T−1 = A>(Γ + (C>Σ−1C)−1)−1A

νT−1 = WT−1A
>Γ−1(C>Σ−1C + Γ−1)−1(C>Σ−1xt+1).

This is equivalent to start from βT−1(zT−1) =
∫
p(xT , zT |zT−1)dzT−1. We can now compute p(zt|x1:T ; Θ̄) (previous formulae):

• Initialise and compute the parameters of the forward distribution.
• Initialise and compute the parameters of the backward distribution.
• Compute the parameters of the posterior.

To finish the E-step, we need to compute the joint distribution p(zt, zt+1|x1:T ), and compute theQ function.

Joint a posteriori In order to compute the joint a posteriori distribution of two consecutive hidden variables, we start by
marginalising, as we did for the posterior of a single latent variable:

p(zt, zt+1|x1:T ) =

∫
. . .

∫
p(z1:T |x1:T )dz1:t−1dzt+2:T (5.36)

(zt,zt+1)
∝ αt(zt)p(xt+1|zt+1)p(zt+1|zt)βt+1(zt+1) (5.37)

(zt,zt+1)
∝ N (zt;µt,Vt)N (xt+1; Czt+1,Σ)N (zt+1; Azt,Γ)N (zt+1;νt+1,Wt+1) (5.38)

(zt,zt+1)
∝ exp

(
−1

2

[
z>t (V−1

t + A>Γ−1A)zt + z>t+1(C>Σ−1C + Γ−1 + W−1
t+1)zt+1

− 2z>t+1Γ
−1Azt − 2z>t V−1

t µt − 2z>t+1(C>Σ−1xt+1 + Wt+1νt+1)

])
. (5.39)
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This means that we will re-use the forward and backward distribution. Another consequence of the previous equation is that the
joint posterior distribution is also Gaussian.
Exercise 5.9: From the expression above, prove that p(zt, zt+1|x1:T ) = N ([zt; zt+1]; rt,Ξt) with:

Ξt =

(
Vt
−1 + A>Γ−1A −A>Γ−1

−Γ−1A Wt+1
−1 + Γ−1 + C>Σ−1C

)−1

and rt = Ξt

(
Vt
−1µt

C>Σ−1xt+1 + Wt+1
−1νt+1

)
. (5.40)

In the previous equations we droped the bar from Θ̄ for simplicity. For the E-step ALWAYS use the parameters of the previous
iteration! Thus, all equations above should use Ā, Γ̄, C̄, Σ̄, d̄ and Ω̄.

5.2.2 M-step
In order to derive the M-step we need some tools. We recall this important result.

EN (z;µ,Σ) {Az} = Aµ and EN (z;µ,Σ)

{
z>Λz

}
= µ>Λµ + Tr(ΛΣ).

and certain properties:
(i) Tr(ABC) = Tr(BCA) (ii)

∂

∂A
Tr(A>B) = B (5.41)

(iii)
∂

∂A
Tr(ABA>C) = CAB + C>AB> (iv)

∂

∂A
log |A| = (A−1)> (5.42)

Let’s recall that the posterior distributions:

p(zt|x1:T ) = N (zt; mt,Λt) and p(zt, zt+1|x1:T ) = N ([zt; zt+1]; ξt,Ξt) (5.43)

(mt ∈ Rdz , Λt ∈ Rdz×dz and ξt ∈ R2dz , Ξt ∈ R2dz×2dz )

M-step: C and Σ The expectation of the t-th term writes:

Ep(zt|x1:T ;Θ̄){log p(xt|zt; Θ)} (Θ)
= −1

2
log |Σ| − 1

2
Tr
{

Σ−1
(
xtx
>
t − 2Cmtx

>
t + C(mtm

>
t + Λt)C

>
)}

(5.44)

Sum over t:

QC,Σ = −T
2

log |Σ| − 1

2
Tr

{
Σ−1

T∑
t=1

(
xtx
>
t − 2Cmtx

>
t + C(mtm

>
t + Λt)C

>
)}

(5.45)

By definining: Sxx =
∑T
t=1 xtx

>
t Szx =

∑T
t=1 mx> Szz =

∑T
t=1 mtm

>
t + Λt:

QC,Σ = −T
2

log |Σ| − 1

2
Tr
{

Σ−1
(
Sxx − 2CSzx + CSzzC

>
)}

(5.46)

By taking derivatives and nulling them out we obtain:

∂Q
∂C

= 0⇒ C∗ = Sxz(Szz)
−1 and ∂Q

∂Σ−1 = 0⇒ Σ∗ =
1

T

(
Sxx − Sxz(Szz)

−1Szx
)
. (5.47)

M-step: A and Γ The t-th term of the sum writes:

−1

2
log |Γ| − 1

2
Tr
{
Ep(zt+1,zt|x1:T ;Θ̄)

{
Γ−1

(
zt+1z

>
t+1 − 2Aztz

>
t+1 + Aztz

>
t A>

)}}
(5.48)

Remember p(zt, zt+1|x1:T ) = N ([zt; zt+1]; ξt,Ξt):

ξt =:

(
ξt−
ξt+

)
Ξt =:

(
Ξt−− Ξt−+

Ξt+− Ξt++

)
, (5.49)

We need to take the expectation, and the sum over t:

S++ =
T∑
t=1

ξt+ξ
>
t+ + Ξt++, S−− =

T∑
t=1

ξt−ξ
>
t− + Ξt−−, S−+ =

T∑
t=1

ξt−ξ
>
t+ + Ξt−+, (5.50)

As a result (very similar formula to the previous one):

QA,Γ = −T − 1

2
log |Γ| − 1

2
Tr
{

Γ−1
(
S++ − 2AS−+ + AS−−A>

)}
(5.51)

The optimal values can be derived as in the previous case.

M-step: d and Ω It is quite easy to see that:
d∗ = m1 Ω∗ = Λ1. (5.52)
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5.2.3 Summary
Start with initial parameters Θ̄. Iterate the following:
E-step Initialise and compute the forward recursion: µt,Vt, ∀t.
Initialise and compute the backward recursion: νt,Wt,∀t.
Compute the parameters of the posterior, mt,Λt , and joint posterior ξt,Ξt, ∀t.

M-step Compute the summary statistics Sxx, Szx, and Szz , and the optimal values C∗ and Σ∗.
Compute the summary statistics S++, S−+, and S−− and the optimal values A∗ and Γ∗.
Compute the optimal initial values d∗ and Ω∗.

Until some convergence criterion is met.

Solutions to (some) Exercises

Solution to Exercise 5.3: To do so, we will consider z fixed in the joint distribution, and complete the Gaussian on x. Developing
the joint distribution with the blocks of the precision matrix of y:

logN (y;µy,Σyy)
y
= −1

2
(y − µy)>Σ−1

yy (y − µy) (5.53)
(x,z)
= −1

2

(
(x− µx)>Λxx(x− µx) + 2(x− µx)>Λxz(z− µz) (5.54)

+ (z− µz)
>Λzz(z− µz)

)
. (5.55)

Now considering a fixed value of z we write:

log p(x|z)
(x)
= −1

2

(
x>Λxx︸︷︷︸

Σ−1
x|z

x− 2x>Σ−1
x|z Σx|z

(
Λxxµx −Λxz(z− µz)

)
︸ ︷︷ ︸

µx|z

)
. (5.56)

Therefore, p(x|z) = N (x;µx|z,Σx|z) with:

Σx|z = Λ−1
xx , µx|z = Σx|z

(
Λxxµx −Λxz(z− µz)

)
(5.57)

= µx −Λ−1
xxΛxz(z− µz) (5.58)

Solution to Exercise 5.4: We will start by considering the Bayes theorem in logarithm form:

log p(z) = log p(x, z)− log p(x|z) (5.59)
(x,z)
= −1

2

(
(x− µx)>Λxx(x− µx) + 2(x− µx)>Λxz(z− µz) (5.60)

(z− µz)
>Λzz(z− µz)

)
+

1

2

(
(x− µx|z)

>Σ−1
x|z(x− µx|z)

)
(5.61)

(x,z)
= −1

2

(
(x− µx)>Λxx(x− µx) + 2(x− µx)>Λxz(z− µz) (5.62)

+ (z− µz)
>Λzz(z− µz)

)
+

1

2

(
(x− µx)>Λxx(x− µx) (5.63)

+ 2(x− µx)>ΛxxΛ
−1
xxΛxz(z− µz) + (z− µz)

>Λ>xzΛ
−1
xxΛxz(z− µz)

)
(5.64)

z
= −1

2
(z− µz)

>
(
Λzz −Λ>xzΛ

−1
xxΛxz

)
(z− µz), (5.65)

which leads to the desired result after applying the Woodbury lemma to see that Σzz =
(
Λzz −Λ>xzΛ

−1
xxΛxz

)−1

.
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