
Learning Probabilities and Causality
Lab on Variational Autoencoders

Xavier Alameda-Pineda

1 / 7

Defining your VAE

You will be using a VAE to represent speech data, more precisely in the
form of a short-time Fourier transform.

⇒ Every observation x will be an F -dimensional complex vector: x ∈ CF .
The low-dimensional latent variable will be real of dimension D: z ∈ RD.

The generative model:
z ∼ N (0, I),
x|z ∼ Nc(x; 0,ΣΘ(z)), (see in 2 slides)

where ΣΘ(z) will be implemented with a deep neural network
parametrised by Θ with input z.

2 / 7

Recalling the log-variance

How can we ensure that ΣΘ(z) is a covariance matrix?
The covariance matrix is assumed to be diagonal:

ΣΘ(z) =

ν

(1)
Θ (z) 0 · · · 0
0 ν

(2)
Θ (z) · · · 0

...
...

0 0 · · · ν
(F)
Θ (z)

 (1)

Reduces complexity and memory, but also expressivity.
We estimate the log-variance: η(f)

Θ (z) = log ν(f)
Θ (z):

ΣΘ(z) = diagd

(
exp

(
η

(f)
Θ (z)

))
(2)

The values of η(f)
Θ (z) can be positive or negative.

3 / 7

Complex Gaussian distribution – Reconstruction Loss

We will only need the 1D complex Gaussian distribution:

Nc(x (f); 0, ν(f)
Θ (z)) = 1

πν
(f)
Θ (z)

exp
(
− |x

(f)|2

ν
(f)
Θ (z)

)
. (3)

Very close to the real Gaussian distribution but missing some “1
2 .”

We will only use the modulus of the speech vector representation.

And recall the output of the decoder network produces the log-variance:
ν

(f)
Θ (z) = exp

(
η

(f)
Θ (z)

)
.

[In function get_loss, implement loss_recon]

4 / 7

Posterior distribution – Regularisation Loss

The exact posterior is not analytic, we approximate with another
feed-forward network parametrised with Φ:

p(z|x) ≈ q(z|x) = N (z; µ̃Φ(x), Σ̃Φ(x)) (4)

Recall that we will estimate the log-variances of a diagonal covariance
matrix.

The regularisation terms is based on the Kullback-Leibler divergence,
which for two D-dimensional real Gaussian distributions writes:

Dkl(N0‖N1) = 1
2

(
Tr(Σ−1

1 Σ0)− D + (µ1 − µ0)>Σ−1
1 (µ1 − µ0) + log |Σ1|

|Σ0|

)

[In function get_loss, implement loss_KLD]

5 / 7

The encoder and decoder networks

The decoder network consists of five layers:
The first four have output dimensions 32, 64, 128 and 256,
respectively, and each of them is followed up with a hyperbolic
tangent activation. They are implemented in the mlp_z_x.
The fifth layer has dimension F , and has no activation layer. It is
implemented in gen_logvar.

The overall generative process uses these two subnetworks in
generation_x (be sure to use torch operators for functions).

The encoder network has a symmetric design:
Four layers with output dim 256, 128, 64, and 32 activated with
tanh. Implemented in mlp_x_z.
Two extra layer with no activation to output both mean and the
log-variance of z. Implemented in z_mean and z_logvar (both D).

The overall inference process uses these two subnetworks in inference.
6 / 7

Finishing the implementation

The only thing missing is to implement the reparametrisation trick that
we’ve seen in class.

The forward and train are already implemented, and you will only need to
run experiments/plot results.

The skeleton will be provided, together with a link to the data, and the
pre-trained model (used for some experiments).

Reports due before vacation break, that is on December 22nd
(Xmas lotery day in Spain) at latest.

7 / 7

