Learning Probabilities and Causality Chapter II - Gaussian mixture models (GMM) and the expectation-maximisation (EM) algorithm

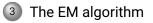
Xavier Alameda-Pineda and Thomas Hueber

Ensimag/Inria/CNRS/Univ. Grenoble-Alpes

Contents

Model-based clustering and GMM

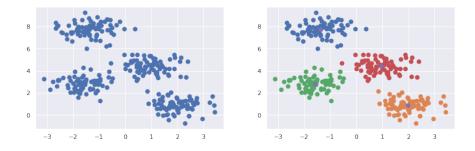
Maximum Likelihood for GMM: the EM algorithm



Model-based clustering and GMM

Clustering

Definition: find groups of data points without labels.



Very intuitive algorithm

What would you do?

What would you do?

- 1 Initialise randomly K centroids.
- ② Assign each data point to the closes centroid.
- ③ Recompute centroids from the assignments.
- Iterate the past two steps.

This is called the *K*-means algorithm. Let's see it on colab.

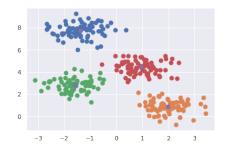
Important points of K-means

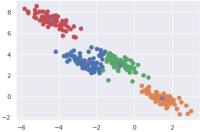
Automatic inference of latent variables

The point-to-cluster assignment variable is **unknown/latent/hidden**, and must be infered together with the parameters.

Limited to spherical and equally populated clusters

The assignment criterion is the Euclidean distances \Rightarrow groups are spherical and equally populated.





Remark 2.1: Gaussian mixture model (GMM):

For each data point *x_n* there is a hidden variable *z_n* taking discrete values from 1 to *K*: *z_n* ∈ {1,...,*K*}.

Remark 2.1: Gaussian mixture model (GMM):

- For each data point *x_n* there is a hidden variable *z_n* taking discrete values from 1 to *K*: *z_n* ∈ {1,...,*K*}.
- Its prior probability is defined as: $p(z_n = k) = \pi_k$, $\sum_{k=1}^{K} \pi_k = 1$.

Remark 2.1: Gaussian mixture model (GMM):

- For each data point x_n there is a hidden variable z_n taking discrete values from 1 to K: $z_n \in \{1, ..., K\}$.
- Its prior probability is defined as: $p(z_n = k) = \pi_k$, $\sum_{k=1}^{K} \pi_k = 1$.
- Given *z_n*, the data point is modeled as a multivariate Gaussian:

$$p(\mathbf{x}_n|z_n=k) = \mathcal{N}(\mathbf{x}_n; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Advantages:

- **1** Having π_1, \ldots, π_K means that groups can be differently populated.
- 2 The shape of the groups is modeled by Σ_k .

Maximum likelihood for GMM

Let's compute $p(\mathbf{x}_n)$

$$p(\mathbf{x}_n) = \sum_{k=1}^{K} p(\mathbf{x}_n, z_n = k) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

The log-likelihood:

$$\mathcal{L}(\boldsymbol{\Theta}|\boldsymbol{X}) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}_n; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k),$$

with $\boldsymbol{\Theta} = \{\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^{K}$.

Compute either
$$\frac{\partial \mathcal{L}}{\partial \pi_k}$$
, $\frac{\partial \mathcal{L}}{\partial \mu_k}$ or $\frac{\partial \mathcal{L}}{\partial \mathbf{\Sigma}_k}$.

Maximum likelihood for GMM

Let's compute $p(\mathbf{x}_n)$

$$p(\mathbf{x}_n) = \sum_{k=1}^{K} p(\mathbf{x}_n, z_n = k) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

The log-likelihood:

$$\mathcal{L}(\boldsymbol{\Theta}|\boldsymbol{X}) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}_n; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k),$$

with $\boldsymbol{\Theta} = \{\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^{K}$.

Compute either $\frac{\partial \mathcal{L}}{\partial \pi_k}$, $\frac{\partial \mathcal{L}}{\partial \mu_k}$ or $\frac{\partial \mathcal{L}}{\partial \mathbf{\Sigma}_k}$. Very difficult to optimise.

Maximum Likelihood for GMM: the EM algorithm

Log-likelihood?

We have see that $\log p(\mathbf{x})$ does not work well with derivatives.

However, $\log p(\mathbf{x}, z)$ does!

Problem: z is not observed, we must take the expectation w.r.t. z.

We have see that $\log p(\mathbf{x})$ does not work well with derivatives.

However, $\log p(\mathbf{x}, z)$ does!

Problem: z is not observed, we must take the expectation w.r.t. z.

We propose to do it using the posterior distribution $p(z|\mathbf{x})$: (we will justify this choice later on)

$$\mathcal{Q}(\boldsymbol{\Theta}, \boldsymbol{\Theta}^0) = \mathbb{E}_{p(z|\boldsymbol{x}; \boldsymbol{\Theta}^0)} \log p(\boldsymbol{x}, z; \boldsymbol{\Theta})$$

This function is called: expected complete-data log-likelihood.

Towards the EM algorithm for GMM

Notation: observations $\mathbf{X} = {\mathbf{x}_n}_{n=1}^N$, latent variables $\mathbf{Z} = {z_n}_{n=1}^N$ and parameters $\mathbf{\Theta} = {\pi_k, \mu_k, \mathbf{\Sigma}_k}_{k=1}^K$.

Towards the EM algorithm for GMM

Notation: observations $\mathbf{X} = {\mathbf{x}_n}_{n=1}^N$, latent variables $\mathbf{Z} = {z_n}_{n=1}^N$ and parameters $\mathbf{\Theta} = {\pi_k, \mu_k, \mathbf{\Sigma}_k}_{k=1}^K$.

Remark 2.3: Given Θ^0 , we use the expected complete-data log-likelihood Q:

- 1 Expectation: $\mathcal{Q}(\Theta, \Theta^0) = \mathbb{E}_{p(\boldsymbol{Z}|\boldsymbol{X};\Theta^0)} \log p(\boldsymbol{Z}, \boldsymbol{X}; \Theta)$
- 2 Maximisation: $\Theta^1 = \arg \max_{\Theta} Q(\Theta, \Theta^0)$

Towards the EM algorithm for GMM

Notation: observations $\mathbf{X} = {\mathbf{x}_n}_{n=1}^N$, latent variables $\mathbf{Z} = {z_n}_{n=1}^N$ and parameters $\mathbf{\Theta} = {\pi_k, \mu_k, \mathbf{\Sigma}_k}_{k=1}^K$.

Remark 2.3: Given Θ^0 , we use the expected complete-data log-likelihood Q:

- 1 Expectation: $Q(\Theta, \Theta^0) = \mathbb{E}_{p(\boldsymbol{Z}|\boldsymbol{X};\Theta^0)} \log p(\boldsymbol{Z}, \boldsymbol{X}; \Theta)$
- 2 Maximisation: $\Theta^1 = \arg \max_{\Theta} Q(\Theta, \Theta^0)$

We can look back to K-means:

- Infer latent variables (assignment) given the parameters (centroids).
- 2 Estimate the parameters (centroids) given the assignments.

Let's recall: $p(z_n = k) = \pi_k \& p(\mathbf{x}_n | z_n = k) = \mathcal{N}(\mathbf{x}_n; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$

Expectation: Compute $\mathcal{Q}(\Theta, \Theta^0) = \mathbb{E}_{p(\boldsymbol{Z}|\boldsymbol{X};\Theta^0)} \log p(\boldsymbol{Z}, \boldsymbol{X}; \Theta).$

• Start with $p(z_n = k | \mathbf{x}_n; \mathbf{\Theta}^0)$.

Let's recall: $p(z_n = k) = \pi_k \& p(\mathbf{x}_n | z_n = k) = \mathcal{N}(\mathbf{x}_n; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$

Expectation: Compute $\mathcal{Q}(\Theta, \Theta^0) = \mathbb{E}_{p(\boldsymbol{Z}|\boldsymbol{X};\Theta^0)} \log p(\boldsymbol{Z}, \boldsymbol{X}; \Theta).$

- Start with $p(z_n = k | \mathbf{x}_n; \Theta^0)$. And name it $\eta_{nk} = p(z_n = k | \mathbf{x}_n; \Theta^0)$. η_{nk} is the posterior probability that \mathbf{x}_n belongs to group k.
- Then $p(\mathbf{x}_n, z_n | \boldsymbol{\Theta})$

Let's recall: $p(z_n = k) = \pi_k \& p(\mathbf{x}_n | z_n = k) = \mathcal{N}(\mathbf{x}_n; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$

Expectation: Compute $\mathcal{Q}(\Theta, \Theta^0) = \mathbb{E}_{p(\boldsymbol{Z}|\boldsymbol{X};\Theta^0)} \log p(\boldsymbol{Z}, \boldsymbol{X}; \Theta).$

• Start with $p(z_n = k | \mathbf{x}_n; \Theta^0)$. And name it $\eta_{nk} = p(z_n = k | \mathbf{x}_n; \Theta^0)$. η_{nk} is the posterior probability that \mathbf{x}_n belongs to group k.

• Then
$$p(\mathbf{x}_n, z_n | \mathbf{\Theta}) = \pi_k \mathcal{N}(\mathbf{x}_n; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

• Also
$$\mathbb{E}_{p(z_n|\mathbf{Z}_n;\mathbf{\Theta}^0)} \log p(z_n, \mathbf{x}_n; \mathbf{\Theta})$$

Let's recall: $p(z_n = k) = \pi_k \& p(\mathbf{x}_n | z_n = k) = \mathcal{N}(\mathbf{x}_n; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$

Expectation: Compute $\mathcal{Q}(\Theta, \Theta^0) = \mathbb{E}_{p(\boldsymbol{Z}|\boldsymbol{X};\Theta^0)} \log p(\boldsymbol{Z}, \boldsymbol{X}; \Theta).$

• Start with $p(z_n = k | \mathbf{x}_n; \Theta^0)$. And name it $\eta_{nk} = p(z_n = k | \mathbf{x}_n; \Theta^0)$. η_{nk} is the posterior probability that \mathbf{x}_n belongs to group k.

• Then
$$p(\mathbf{x}_n, z_n | \mathbf{\Theta}) = \pi_k \mathcal{N}(\mathbf{x}_n; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

• Also
$$\mathbb{E}_{p(z_n|\boldsymbol{Z}_n;\boldsymbol{\Theta}^0)} \log p(z_n, \boldsymbol{x}_n; \boldsymbol{\Theta}) = \sum_{k=1}^{K} \eta_{nk} \log \pi_k \mathcal{N}(\boldsymbol{x}_n; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

Remark 2.4:

$$\mathcal{Q}(\boldsymbol{\Theta}, \boldsymbol{\Theta}^0) = \sum_{n=1}^{N} \sum_{k=1}^{K} \eta_{nk} \log \pi_k \mathcal{N}(\boldsymbol{x}_n; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

EM for GMM (II)

Let's recall:

$$\mathcal{Q}(\boldsymbol{\Theta}, \boldsymbol{\Theta}^0) = \sum_{n=1}^{N} \sum_{k=1}^{K} \eta_{nk} \log \pi_k \mathcal{N}(\boldsymbol{x}_n; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

This splits:

$$\mathcal{Q}(\boldsymbol{\Theta}, \boldsymbol{\Theta}^{0}) = \sum_{n=1}^{N} \sum_{k=1}^{K} \eta_{nk} \log \pi_{k} + \eta_{nk} \log \mathcal{N}(\boldsymbol{x}_{n}; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}).$$

We consider now the Lagrangian for π_1, \ldots, π_K :

$$\mathcal{Q}(\boldsymbol{\Theta}, \boldsymbol{\Theta}^{\mathbf{0}}) = \sum_{n=1}^{N} \sum_{k=1}^{K} \eta_{nk} \log \pi_{k} + \beta \left(1 - \sum_{k=1}^{K} \pi_{k}\right).$$

EM for GMM (III)

Exercise 2.1: Prove that the optimal parameters write:

$$\pi_k^* = \frac{1}{N} \mathbf{S}_k, \qquad \mathbf{S}_k = \sum_{n=1}^N \eta_{nk},$$

and:

$$\boldsymbol{\mu}_{k}^{*} = \frac{1}{S_{k}} \sum_{n=1}^{N} \eta_{nk} \boldsymbol{x}_{n} \qquad \boldsymbol{\Sigma}_{k}^{*} = \frac{1}{S_{k}} \sum_{n=1}^{N} \eta_{nk} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}^{*}) (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}^{*})^{\top}.$$

The EM algorithm

Let us assume a probabilistic graphical model, with observed variables \boldsymbol{X} , hidden variables \boldsymbol{z} and parameters $\boldsymbol{\Theta}$.

Remark 2.5: Initialise the parameters Θ^0 . For iteration r = 1, ..., R: E-step Compute $p(\mathbf{z}|\mathbf{X}; \Theta^{r-1})$ and $\mathcal{Q}(\Theta, \Theta^{r-1})$. M-step Compute $\Theta^r = \arg \max_{\Theta} \mathcal{Q}(\Theta, \Theta^{r-1})$.

Comments

- EM is sensible to initialisation.
- It may converge to a local maxima or saddle point.
- We still need to compute and optimise $\mathcal{Q}(\Theta, \Theta^{r-1})$.

But why does it work?

The main mathematical object in EM is Q. (The expected complete-data log-likelihood).

What is the relationship with the log-likelihood? Let's take any distribution of \mathbf{z} : $q(\mathbf{z})$ and ignore Θ for the time being.

$$\begin{split} \log p(\mathbf{x}) &= \mathbb{E}_{q(\mathbf{z})} \Big[\log p(\mathbf{x}) \Big] \\ &= \mathbb{E}_{q(\mathbf{z})} \Big[\log p(\mathbf{x}) \frac{p(\mathbf{z}|\mathbf{x})q(\mathbf{z})}{p(\mathbf{z}|\mathbf{x})q(\mathbf{z})} \Big] \\ &= \mathbb{E}_{q(\mathbf{z})} \Big[\log \frac{p(\mathbf{x})p(\mathbf{z}|\mathbf{x})}{q(\mathbf{z})} \Big] + D_{\mathsf{KL}} \Big(q(\mathbf{z}) \Big\| p(\mathbf{z}|\mathbf{x}) \Big) \end{split}$$

But why does it work? (II)

$$\log p(\mathbf{x}; \mathbf{\Theta}) = \underbrace{\mathbb{E}_{q(\mathbf{z})} \left[\log \frac{p(\mathbf{x})p(\mathbf{z}|\mathbf{x})}{q(\mathbf{z})} \right]}_{\text{M-step}} + \underbrace{D_{\text{KL}} \left(q(\mathbf{z}) \left\| p(\mathbf{z}|\mathbf{x}) \right)}_{\text{E-step}} \right)$$

Another interpretation. Given Θ^0 :

- 1) Set $q(\mathbf{z}) = p(\mathbf{z}|\mathbf{x}; \mathbf{\Theta}^0)$.
- 2 Optimise w.r.t. Θ :

$$\mathbf{E}_{q(\boldsymbol{z})}\Big[\log\frac{p(\boldsymbol{x},\boldsymbol{z};\boldsymbol{\Theta})}{q(\boldsymbol{z})}\Big]$$

Why?

E-step: reduce the distance between log-likelihood and \mathcal{Q} . M-step: push \mathcal{Q} and therefore push the log-likelihood.

But why does it work? (III)

$$\log p(\mathbf{x}; \mathbf{\Theta}) = \underbrace{\mathbb{E}_{q(\mathbf{z})} \left[\log \frac{p(\mathbf{x})p(\mathbf{z}|\mathbf{x})}{q(\mathbf{z})} \right]}_{\mathcal{L}(q, \mathbf{\Theta})} + \underbrace{\frac{D_{\mathsf{KL}} \left(q(\mathbf{z}) \| p(\mathbf{z}|\mathbf{x}) \right)}{\mathsf{KL}(q \| p)}}_{\mathsf{KL}(q \| p)}$$

