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Model-based clustering and GMM
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Clustering

Definition: find groups of data points without labels.
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Very intuitive algorithm

What would you do?

1 Initialise randomly K centroids.
2 Assign each data point to the closes centroid.
3 Recompute centroids from the assignments.
4 Iterate the past two steps.

This is called the K-means algorithm. Let’s see it on colab.
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Important points of K-means

Automatic inference of latent variables
The point-to-cluster assignment variable is unknown/latent/hidden,
and must be infered together with the parameters.

Limited to spherical and equally populated clusters
The assignment criterion is the Euclidean distances⇒ groups are
spherical and equally populated.
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Generalising K-means: GMM

Remark 2.1: Gaussian mixture model (GMM):
For each data point xn there is a hidden variable zn taking discrete
values from 1 to K: zn ∈ {1, . . . ,K}.

Its prior probability is defined as: p(zn = k) = πk,
∑K

k=1 πk = 1.
Given zn, the data point is modeled as a multivariate Gaussian:

p(xn|zn = k) = N (xn;µk,Σk)

Advantages:
1 Having π1, . . . , πK means that groups can be differently populated.
2 The shape of the groups is modeled by Σk.
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Maximum likelihood for GMM

Let’s compute p(xn)

p(xn) =
K∑

k=1
p(xn, zn = k) =

K∑
k=1

πkN (xn;µk,Σk).

The log-likelihood:

L(Θ|X) =
N∑

n=1
log

K∑
k=1

πkN (xn;µk,Σk),

with Θ = {πk,µk,Σk}Kk=1.

Compute either ∂L
∂πk

, ∂L
∂µk

or ∂L
∂Σk

.

Very difficult to optimise.
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Maximum Likelihood for GMM: the EM algorithm
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Log-likelihood?

We have see that log p(x) does not work well with derivatives.

However, log p(x, z) does!

Problem: z is not observed, we must take the expectation w.r.t. z.

We propose to do it using the posterior distribution p(z|x):
(we will justify this choice later on)

Q(Θ,Θ0) = Ep(z|x;Θ0) log p(x, z;Θ)

This function is called: expected complete-data log-likelihood.
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Towards the EM algorithm for GMM

Notation: observations X = {xn}Nn=1, latent variables Z = {zn}Nn=1 and
parameters Θ = {πk,µk,Σk}Kk=1.

Remark 2.3: GivenΘ0, we use the expected complete-data log-likelihood
Q:

1 Expectation: Q(Θ,Θ0) = Ep(Z|X;Θ0) log p(Z,X;Θ)

2 Maximisation: Θ1 = argmax
Θ
Q(Θ,Θ0)

We can look back to K-means:
1 Infer latent variables (assignment) given the parameters

(centroids).
2 Estimate the parameters (centroids) given the assignments.
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EM for GMM

Let’s recall: p(zn = k) = πk & p(xn|zn = k) = N (xn;µk,Σk).

Expectation: Compute Q(Θ,Θ0) = Ep(Z|X;Θ0) log p(Z,X;Θ).

Start with p(zn = k|xn;Θ0).

And name it ηnk = p(zn = k|xn;Θ0).
ηnk is the posterior probability that xn belongs to group k.

Then p(xn, zn|Θ)= πkN (xn;µk,Σk).

Also Ep(zn|Zn;Θ0) log p(zn, xn;Θ)=
∑K

k=1 ηnk log πkN (xn;µk,Σk).

Remark 2.4:

Q(Θ,Θ0) =
N∑

n=1

K∑
k=1

ηnk log πkN (xn;µk,Σk).
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EM for GMM (II)

Let’s recall:

Q(Θ,Θ0) =
N∑

n=1

K∑
k=1

ηnk log πkN (xn;µk,Σk).

This splits:

Q(Θ,Θ0) =
N∑

n=1

K∑
k=1

ηnk log πk + ηnk logN (xn;µk,Σk).

We consider now the Lagrangian for π1, . . . , πK :

Q(Θ,Θ0) =
N∑

n=1

K∑
k=1

ηnk log πk + β
(
1−

K∑
k=1

πk

)
.
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EM for GMM (III)

Exercise 2.1: Prove that the optimal parameters write:

π∗k =
1
NSk, Sk =

N∑
n=1

ηnk,

and:

µ∗k =
1
Sk

N∑
n=1

ηnkxn Σ∗k =
1
Sk

N∑
n=1

ηnk(xn − µ∗k)(xn − µ∗k)
>.
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The EM algorithm
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The EM in general

Let us assume a probabilistic graphical model, with observed variables
X, hidden variables z and parameters Θ.

Remark 2.5: Initialise the parameters Θ0. For iteration r = 1, . . . ,R:
E-step Compute p(z|X;Θr−1) and Q(Θ,Θr−1).
M-step Compute Θr = argmaxΘQ(Θ,Θr−1).

Comments
EM is sensible to initialisation.
It may converge to a local maxima or saddle point.
We still need to compute and optimise Q(Θ,Θr−1).
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But why does it work?

The main mathematical object in EM is Q.
(The expected complete-data log-likelihood).

What is the relationship with the log-likelihood?
Let’s take any distribution of z: q(z) and ignore Θ for the time being.

log p(x) = Eq(z)
[
log p(x)

]
= Eq(z)

[
log p(x)p(z|x)q(z)p(z|x)q(z)

]
= Eq(z)

[
log

p(x)p(z|x)
q(z)

]
+ DKL

(
q(z)

∥∥∥p(z|x))
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But why does it work? (II)

log p(x;Θ) = Eq(z)
[
log

p(x)p(z|x)
q(z)

]
︸ ︷︷ ︸

M-step

+DKL
(
q(z)

∥∥∥p(z|x))︸ ︷︷ ︸
E-step

Another interpretation. Given Θ0:
1 Set q(z) = p(z|x;Θ0).
2 Optimise w.r.t. Θ:

Eq(z)
[
log

p(x, z;Θ)

q(z)
]

Why?
E-step: reduce the distance between log-likelihood and Q.
M-step: push Q and therefore push the log-likelihood.
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But why does it work? (III)

log p(x;Θ) = Eq(z)
[
log

p(x)p(z|x)
q(z)

]
︸ ︷︷ ︸

L(q,Θ)

+DKL
(
q(z)

∥∥∥p(z|x))︸ ︷︷ ︸
KL(q‖p)
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