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Clustering

Definition: find groups of data points without labels.
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Very intuitive algorithm

What would you do?
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Very intuitive algorithm

What would you do?

@ Initialise randomly K centroids.

@ Assign each data point to the closes centroid.
@ Recompute centroids from the assignments.
@ Iterate the past two steps.

This is called the K-means algorithm. Let’s see it on colab.
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Important points of K-means

Automatic inference of latent variables

The point-to-cluster assignment variable is unknown/latent/hidden,
and must be infered together with the parameters.

Limited to spherical and equally populated clusters

The assignment criterion is the Euclidean distances = groups are
spherical and equally populated.
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Generalising K-means: GMM

Remark 2.1: Gaussian mixture model (GMM):

o For each data point x,, there is a hidden variable z, taking discrete
values from 1to K: z, € {1,...,K}.
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Generalising K-means: GMM

Remark 2.1: Gaussian mixture model (GMM):

o For each data point x,, there is a hidden variable z, taking discrete
values from 1to K: z, € {1,...,K}.

o Its prior probability is defined as: p(z, = k) = m, Zf:1 e = 1.
o Given z,, the data point is modeled as a multivariate Gaussian:

p(Xn|zn = k) = N (Xn; g, )

Advantages:
@ Having 7, ..., ¢ means that groups can be differently populated.

@ The shape of the groups is modeled by ;.
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Maximum likelihood for GMM

Let's compute p(xp)

K

K
p(xn) = ZP(Xn,Zn =k) = ZT"kN(Xn; i, Zg)-

k=1 k=1

The log-likelihood:

Z'ngﬂk/\/ Xn; i X),
n=1

with © = {ﬂ-ka M zk}lif:'l'

oL oL

h —_—
Compute either — o’ 5,uk or 9%,
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Maximum likelihood for GMM

Let's compute p(xp)

K

K
p(xn) = ZP(Xn,Zn =k) = ZT"kN(Xn; i, Zg)-

k=1 k=1

The log-likelihood:

Z'ngﬂk/\/ Xn; i X),
n=1

with © = {ﬂ-ka M zk}lif:'l'

oL oL

Compute either ;’i 87“,( a—zk Very difficult to optimise.
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Log-likelihood?

We have see that log p(x) does not work well with derivatives.

However, log p(x, z) does!

Problem: z is not observed, we must take the expectation w.r.t. z.
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Log-likelihood?

We have see that log p(x) does not work well with derivatives.

However, log p(x, z) does!

Problem: z is not observed, we must take the expectation w.r.t. z.

We propose to do it using the posterior distribution p(z|x):
(we will justify this choice later on)

0(0,0°% = Epzix.00) logp(x, Z; ©)

This function is called: expected complete-data log-likelihood.
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Towards the EM algorithm for GMM

Notation: observations X = {x,}_,, latent variables Z = {z,}N_, and
parameters © = {m, py, T}k,
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Towards the EM algorithm for GMM

Notation: observations X = {x,}_,, latent variables Z = {z,}N_, and
parameters © = {m, py, T}k,

Remark 2.3: Given @°, we use the expected complete-data log-likelihood
Q.

@ Expectation: 9Q(0,0°%) = E,zix.0" 108P(Z,X; ©)
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Towards the EM algorithm for GMM

Notation: observations X = {x,}_,, latent variables Z = {z,}N_, and
parameters © = {m, py, T}k,

Remark 2.3: Given @°, we use the expected complete-data log-likelihood
Q.
@ Expectation: 9Q(0,0°%) = E,zix.0" 108P(Z,X; ©)

@ Maximisation: O'=arg max (O, CR)

We can look back to K-means:

@ Infer latent variables (assignment) given the parameters
(centroids).

@ Estimate the parameters (centroids) given the assignments.
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EM for GMM
Let's recall: p(z, = k) = m & p(Xn|zn = k) = N (Xn; g, ).
Expectation: Compute (0, 0°) = Epzix.00) logp(Z,X; ©).

o Start with p(z, = k|x,; @°).
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EM for GMM
Let's recall: p(z, = k) = m & p(Xn|zn = k) = N (Xn; g, ).
Expectation: Compute Q(@, @°) = Eyzix.00) logp(Z, X; ©).

o Start with p(z, = k|xn; ©°). And name it 7, = p(zn = k|xn; ©°).
1nk 1S the posterior probability that x, belongs to group k.

© Then p(Xn, Zn|@)= mN (Xn; py, Xi)-

o Also Ep(zn\zn;eo) log p(zn, Xn; O)= 25:1 Mk 108 TN (Xn; fak, Z)-

Remark 2.4:

N K
Q(0,0°% => "> log mN (Xn; i, Zg)-

n=1 k=1
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EM for GMM (1)

Let's recall:

N K
Q(0,0°% => "> log mN (Xn; i, Zg)-

n=1 k=1

This splits:

N K
Q(0,0°% => > " log mk + 1k log N (Xn; g, ).
n=1 k=1

We consider now the Lagrangian for 7, ..., mk:

K
0(0,0°% = ZZnnklogwk+6< Zwk>.

n=1 k=1 k=1
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EM for GMM (1)

Exercise 2.1: Prove that the optimal parameters write:

and:

N N
M= g > nikn  Ep= 5 > mok(Xn — 1) (X0 — pi)
n=1 n=1
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The EM in general

Let us assume a probabilistic graphical model, with observed variables
X, hidden variables z and parameters ©.

Remark 2.5: Initialise the parameters @°. For iterationr =1,... ,R:
E-step Compute p(z|X; ® ") and Q(@,0" ).
M-step Compute @ = arg maxg Q(0,0" ).

Comments
@ EM is sensible to initialisation.
@ It may converge to a local maxima or saddle point.
o We still need to compute and optimise Q(©, 0" ).
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But why does it work?

The main mathematical object in EM is Q.
(The expected complete-data log-likelihood).

What is the relationship with the log-likelihood?
Let’s take any distribution of z: g(z) and ignore © for the time being.

log p(x) = IE‘:’q(z) — log p(X)]
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But why does it work? (ll)

logp(x; ©) = Eq(z) [Iog p(xq);()z()zp()} + Dy (q(z) p(z|x))
M-step E-step

Another interpretation. Given @°:
@ Setq(z) = p(z|x; ©°).
@ Optimise w.r.t. ©:

Why?

E-step: reduce the distance between log-likelihood and Q.
M-step: push Q and therefore push the log-likelihood.
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But why does it work? (ll1)

08 P(xi ) = gt 1oz 2| + D (a(2) [p(zie)

£(q,0) KL(qllp)

KL(q|/p)

£(q.0) In p(X|6)
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