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Course Content

Learning Probabilities and Causality is structured in two parts.
1 Learning for probabilistic models given a causality graph

(Thomas & Xavi)
2 Methods for inferring this graph from data

(Emilie & Eric)
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Course Content - Part 1

Probabilistic learning with latent variables:

1 Basics of probabilistic models: conditional independence
2 Model-based clustering and Gaussian mixture models
3 Sequential data and hidden Markov models
4 Probabilistic principal component analysis
5 Linear dynamical systems
6 Approximate variational inference
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LPC Part 1 - Instructors

Research Scientist [website] @thomashueber
thomas.hueber@gipsa-lab.fr

Leader of CRISSP (cognitive robotics, interactive
systems, speech processing), GIPSA-Lab, CNRS

Multimodal speech processing, machine learning,
interactive systems

Research Scientist [webpage] @xavirema
xavier.alameda-pineda@inria.fr

Perception Team, Inria Grenoble Rhône-Alpes

Audio-visual perception, probabilistic and deep
learning, human-robot interaction
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Grading Rules

Lab work (LW), mid-term exam (ME) final exam (FE).
Grade = (LW+ME+FE)/3.
LW = average of all lab works.

Support material:
https://chamilo.grenoble-inp.fr/courses/ENSIMAGWMM9AM46.
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Calendar

When? Who? Where? Comment
30-Sep Xavi D211
7-Oct Thomas D207

14-Oct Thomas D207 & E303 Lab (15h30-17h)
21-Oct Xavi D111
28-Oct Xavi H105
18-Nov Xavi D111/E303 Lab (15h30-17h)
25-Nov Emilie/Eric H105 Mid-term Exam (14h-15h30)
2-Dec Emilie/Charles H105
9-Dec Emilie E201 Lab (14h-17h)
16-Dec Eric/Charles H105
6-Jan Charles/Emilie H105
13 Jan Charles/Eric H105/E200 Lab (15h30-17h)
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References

There is a lot of bibliography on probabilistic graphical models.

I strongly suggest the following book:

Pattern Recognition and Machine Learning,
from Christopher M. Bishop (Springer)

The concepts discussed in FPDM
correspond to different parts of Ch. 2, 8, 9,
10, 12, 13.

You will not find the part on variational
autoencoders (last chapter).
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Introduction and Motivation
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What is probabilistic data mining?

Probabilistic means we model our data using probabilities.
For example in classification, we aim to estimate the posterior
probability: P(c|x) for every possible class c.
Probabilistic generative models & Bayes rule:

p(x, c) = p(x|c)p(c) ⇒ p(c|x) = p(x|c)p(c)∑
k
p(x|k)p(k)

What are all these “p”? What do they mean?
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Probabilities

For discrete variables (i.e. measurable events are discrete):

p(c) = P(C = c).

→ the probability of the random variable C to value event c.

For continuous variables (i.e. measurable events are continuous):

p(x) = fX(x) and p(X ) = P(x ∈ X ) =
∫
X
fX(x)dx

fX is the probability density function. Remember P({x}) = 0.
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Why probabilistic data mining?
Infer hidden variables / exploit partly missing data
Example: clustering, image segmentation
Incorporate particular requirements in clustering
Model complex data (on grids, graphs, temporal, ...)
Simulate phenomena (speech synthesis), make predictions
(regime switching in time series)

Segmentation of time series with
respect to the variance
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Example (I): Clustering

Data: points (xj)j=1,...,n in Rd.
Aim: find (& predict) clusters.
Model-based approach: let zj be the (unknown) cluster of xj.
zi = zj ⇒ xi and xj should have the same (conditional) distribution.
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Example (II): Dimensionality reduction
Raw data are high-dimensional descriptors.
Difficult to mine patterns/visualize.
Projection on the directions of maximum variance.
What if for most or even every point xj, some coordinates are
missing?
Probabilistic (i.e., model-based) PCA relies on a generative model
to exploit partially observed / unknown data.

u1

u2

u3

?
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Example (III): Analysis of sequential data

Special case of clustering with temporal dependencies
Piecewise statistically invariant features with Markovian jumps
Markovian: it depends only on a few close neighbors.
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The multivariate Gaussian Distribution
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1D Gaussians

Let’s recall the definition of the univariate Gaussian distribution, for
x ∈ R:

p(x) = N (x;µ, ν) = 1√
2πν

exp
(
− (x− µ)2

2ν

)
,

µ = EN (x;µ,ν){x} ∈ R is the mean.
ν = EN (x;µ,ν){(x− µ)2} ∈ R+ is the variance.

Remark 1.1: We will often use the expectation of a function f of a ran-
dom variable x w.r.t. the probability density function p(x), and denote it
by:

Ep(x){f(x)} =
∫
X
f(x)p(x)dx,

where X is the domain of the random variable x.
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1D Gaussians: ML estimators

And of its ML estimators for a set of N samples X = {x1, . . . , xN}:

L(µ, ν|X) =
N∑

n=1
logN (xn;µ, ν)

Exercise 1.1: Prove that the maximum likelihood estimators are:

µ∗ =
1
N

N∑
n=1

xn ν∗ =
1
N

N∑
n=1

(xn − µ∗)2.

Hint: Compute ∂L
∂µ

and ∂L
∂ν

knwoing that

logN (x;µ, ν) = − 1
2

(
log(2πν) + (x−µ)2

ν

)
.
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Proof

L(µ, ν|X) =
N∑

n=1
logN (xn;µ, ν)

= − 1
2

N∑
n=1

log(2πν) + (xn − µ)2
ν

= − 1
2

(
N log(2πν) + 1

ν

N∑
n=1

(xn − µ)2
)

And hence:

∂L
∂µ

=
1
ν

N∑
n=1

(xn − µ)
∂L
∂ν

= − N
2ν +

1
2ν2

N∑
n=1

(xn − µ)2

By setting the derivatives to 0, we obtain the sought result.
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Multivariate Gaussian distribution
Trivial extension: consider each dimension independently.

p(x) = N (x;µ,ν) =
D∏

d=1

1√
2πνd

exp
(
− (xd − µd)

2

2νd

)
,

with x = (x1, . . . , xD) ∈ Rd, µ = (µ1, . . . , µD) ∈ Rd and ν = (ν1, . . . , νD) ∈ R+.

Exercise 1.2: Derive the maximum likelihood estimators for µ and ν.
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Multivariate Gaussian distribution (II)

By defining:

Σ = diag(ν) =


ν1 0 . . . 0
0 ν2 . . . 0
...

... . . . ...
0 0 . . . νD


the density rewrites as:

p(x) = N (x;µ,Σ) =
1√
|2πΣ|

exp
(
− 1

2(x − µ)>Σ−1(x − µ)
)
.

Exercise 1.3: Prove it!
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Symmetric and positive definite matrices
Question: does it work for any matrix Σ?

Only for symmetric and positive definite (s.p.d.) matrices.

Remark 1.2: A D×D symmetric matrixΣ is positive definite if and only
if v>Σv > 0, ∀v 6= 0.

For the Gaussian distribution, this is intuitive, since the variance should
be strictly positive in any direction:
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Symmetric and positive definite matrices (II)

Let Σ be a s.p.d. matrix:
All eigenvalues of Σ are ...?

Real and strictly positive!
The inverse of Σ is ...? Symmetric and positive definite.
How do we know that Σ−1 exists? The determinant is the product
of eigenvalues.
We can write Σ = UΛU> with Λ diagonal and U orthogonal. Why?
So Λ contains eigenvalues and U contains eigenvectors (as
columns).
Then, Σ−1 = UΛ−1U>.

Exercise 1.4: Prove that the inverse of a (symmetric) positive definite
matrix always exists.
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Defining multivariate Gaussians

Remark 1.3: Given a vector µ ∈ RD and a s.p.d. matrix Σ ∈ RD×D, we
can define the multivariate Gaussian distribution as:

N (x;µ,Σ) =
1√
|2πΣ|

exp
(
− 1

2(x − µ)>Σ−1(x − µ)
)

µ and Σ are usually referred to as the mean vector and the covariance
matrix, and they are defined as:

µ = EN (x;µ,Σ){x} Σ = EN (x;µ,Σ){(x− µ)(x− µ)>}.

Exercise 1.5: Prove that the normalisation constant of a multivariate
Gaussian distribution with covariance matrix Σ is

√
|2πΣ|.

Jupyter Notebook!!!
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Standard Gaussian and Affine Transforms

Remark 1.4: The standard multivariate Gaussian is defined as the zero-
mean and unit-variance Gaussian distribution:

N (z;0, I) = 1
(2π)D/2

exp
(
− 1

2‖z‖
2
)
.

Exercise 1.6: Let us consider the case where z follows a standard mul-
tivariate Gaussian distribution, and we define x = Az+µwith A ∈ RD×D

being an invertible matrix (|A| 6= 0). Prove that:

p(x) = N (x;µ,Σ), with Σ = AA>.
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More on Multivariate Gaussians

What are the level curves of the Gaussian p.d.f.?

Cλ = {x|N (x;µ,Σ) = λ}.

Empty set for λ < 0.

C0 = {µ}.

Cλ? An ellipsoid with center µ
with axis given by the columns of
U and axis length given by the
elements in Λ, where Σ = UΛU>.
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ML for multivariate Gaussians

Exercise 1.7: Prove that the ML estimators of the multivariate Gaussian
are:

µ∗ =
1
N

N∑
n=1

xn Σ∗ =
1
N

N∑
n=1

(xn − µ∗)(xn − µ∗)>.

You will need to take derivatives w.r.t. matrices. Let M be a matrix, and
f(M) and function of that matrix (e.g. trace, ...). One can consider ∂f

∂M .

Examples of matrix derivative formulae useful to derive the ML
estimate of multivariate Gaussians:

∂Tr(MA)
∂M = A> ∂Tr(B>M>CMB)

∂M = C>MBB> + CMBB>

∂ log |M|
∂M = (M−1)> [Tr(ABC) = Tr(BCA) = Tr(CAB)]
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Gaussian Completion: Shape is All You Need

Remark 1.5: Developing multivariate Gaussian distribution, we observe
that only two terms depend on x (quadratic and linear):

N (x;µ,Σ)
x∝ exp

(
− 1

2x
>Σ−1x + x>Σ−1µ

)
.

( x∝means that is proportional up to a constant that does NOT depend on x)

Exercise 1.8: Prove that given a s.p.d. matrix Ω and a vector m:

p(x) x∝ exp
(
− 1

2x>Ωx+ x>m
)
⇒ p(x) = N (x;µ,Σ)

with:
Σ = Ω−1 µ = Σm = Ω−1m.

More on multivariate Gaussians in Chapter 4.
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Latent Variables and Conditional Independence
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What is a model?

What does it mean to model the relationship between two variables?

Z

X

We choose the nature of z & x: cont./discrete, bounded, ...
We choose the dependencies, i.e. p(x, z) = p(x|z)p(z).
We choose the prior distribution p(z).
We choose the likelihood distribution p(x|z).
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Remark 1.6: There is an important difference between observed and
latent or hidden variables. Observed variables are measured, and latent
variables are quantities that cannot be measured directly.
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Remark 1.7: In models with latent variables, we study the marginal dis-
tribution of x (left) and the posterior distribution of z given x (right):

p(x) =
∫
Z
p(x|z)p(z)dz p(z|x) = p(x|z)p(z)

p(x)
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Example: Gaussian mixture model

Z

X

The nature: z is discrete & bounded, x is 1D & continuous.
The dependencies: p(x, z) = p(x|z)p(z).

The distribution p(z), z ∈ {1, . . . ,K} is categorical:

p(z = k) = πk, πk ≥ 0,
K∑

k=1
πk = 1.

The distribution p(x|z) is Gaussian:

p(x|z = k) = N (x;µk, νk) =
1√
2πνk

exp
(
− (x− µk)

2

2νk

)
with µk ∈ R and νk > 0, ∀k.
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Likelihood and GMM posteriors

Exercise 1.9: Prove that the GMM marginal writes:

p(x) =
K∑

k=1
πk

1√
2πνk

exp
(
− (x− µk)

2

2νk

)
.

Exercise 1.10: Prove the GMM posterior writes:

p(z = k|x) =
πk

1√
2πνk

exp
(
− (x−µk)

2

2νk

)
∑K

m=1 πm
1√

2πνm
exp

(
− (x−µm)2

2νm

) .
Hint: Just write down what things are.

More on this on the Chapter 2.
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Latent Variables and Conditional Independence
—

Conditional Independence
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3-variable models: taxonomy

X

Z

Y Full all dependencies are set:

p(x, y, z) = p(z|x, y)p(y|x)p(x)

X

Z

Y Two-kids Y-Z dependency missing:

p(x, y, z) = p(z|x, y)p(y|x)p(x)

X

Z

Y Two-parents X-Y dependency missing:

p(x, y, z) = p(z|x, y)p(y|x)p(x)

X

Z

Y Cascaded X-Z dependency missing:

p(x, y, z) = p(z|x, y)p(y|x)p(x)
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3-variable models: Two-kids

X

Z

Y
Two-kids p(x, y, z) = p(z|x)p(y|x)p(x).

Exercise 1.11: Prove that in the Two-kids model:

p(y|z) 6= p(y) and p(y|z, x) = p(y|x)

The first statement is equivalent to say that y and z are not
independent.
The second statement, says that y and z are conditionally
independent w.r.t. x.
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3-variable models: Two-parents

X

Z

Y
Two-parents p(x, y, z) = p(z|x, y)p(x)p(y).

Exercise 1.12: Prove that in the Two-parents model:

p(y|x) = p(x) and p(x|y, z) 6= p(x|z). (1)

We are in the opposite case:
The first statement says that y and x are independent.
The second statement says that y and x are conditionally
dependent w.r.t. z.
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3-variable models: Cascaded

X

Z

Y
Cascaded p(x, y, z) = p(z|y)p(y|x)p(x).

Exercise 1.13: Prove that in the Cascaded model:

p(x, z) 6= p(x)p(z) and p(x, z|y) = p(x|y)p(z|y). (2)

In this case, we obtain similar results than with the Two-kids model.

Remark 1.8: At this point it should be clear that independence and con-
ditional independence are two very different properties of random vari-
ables.
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In this case, we obtain similar results than with the Two-kids model.

Remark 1.8: At this point it should be clear that independence and con-
ditional independence are two very different properties of random vari-
ables.
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Conditional Independence: Definition

Remark 1.9: Let x, y, and z be random variables, we say that x and y
are conditionally independent given z, and write x ⊥⊥ y | z, iff one of the
following equivalent expressions holds:

p(x, y|z) = p(x|z)p(y|z)
p(x|y, z) = p(x|z)
p(y|x, z) = p(y|z)
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Latent Variables and Conditional Independence
—

D-separation
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Motivation

Let’s consider the following variables and dependencies.

C D

P

H T

JJ C

CO2V CO2

F

Is P ⊥⊥ V | T ? How would you do it ? Is the previous strategy scalable ?

41 / 54



Basics

Let us recall the 3-var models:

X

Z

Y Two kids The path from Z to Y is called “tail-to-tail.”

p(z, y|x) = p(z|x)p(y|x)
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Path blocking

Two-kids Cascaded Two-parents
tail-to-tail head-to-tail head-to-head

X

Z

Y X

Z

Y X

Z

Y

The purple node “blocks” the path in two-kids/tail-to-tail &
cascaded/head-to-tail→ conditional independence.

The purple node “unblocks” the path in two-parents/head-to-head→
conditional dependence.
In the two-parents, Z or any descendant of Z will unblock the path.
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Path blocking (revisited)

(Let me change the variable names)

Two-kids Cascaded Two-parents
tail-to-tail head-to-tail head-to-head

C

A

B A

B

C A B

C
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Path blocking (revisited)

(Let me change the variable names)

Two-kids Cascaded Two-parents
tail-to-tail head-to-tail head-to-head

C

A

B A

B

C A B

C

Tail-to-tail & head-to-tail→ A ⊥⊥ B |C.

Head-to-head→ A 6⊥⊥ B |C or any descendant of C.

⇒ If A ⊥⊥ B |C, nodes within tail-to-tail or head-to-tail can be in C and
nodes within head-to-head or any of their descendents must not be in
C.
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Path blocking (definition)

Remark 1.10: Let A, B and C be three non-intersecting sets of nodes of a di-
rected acyclic graph. A path from A to B is said to be blocked by C if it includes
a node that either:

the path meets tail-to-tail or head-to-tail at the node and the node is in C;

the path meets head-to-head at the node and neither the node nor any of
its descendants are in C.

X

Y

U

V

Z

(Corresponds to Exercise: 1.14.)

Is the path from {x} to {v} blocked by {u}?
Is the path from {x} to {v} blocked by {y}?
Is the path from {x} to {v} blocked by {z}?
Is the path from {y} to {v} blocked by {u}?
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D-separation

Remark 1.11: Let A, B and C be three non-intersecting sets of nodes of
a directed acyclic graph. A and B are D-separated by C, if all paths from
any node from A to B are blocked by C.

X

Y

U

V

Z

(Corresponds to Exercise: 1.15.)

Is {X} D-separated from {V} by {U}?
Is {X} D-separated from {V} by {Y}?
Is {X} D-separated from {V} by {Y,U}?

Remark 1.12: A and B are D-separated by C if and only if A ⊥⊥ B|C.
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Latent Variables and Conditional Independence
—

Markovian dependencies
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Markov models: introduction

Principle: each variable depends only on its closer neighbours.
Examples:

Xt-1 Xt Xt+1

Markov chain.
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Examples:

Xt-1 Xt Xt+1

Xt-1

Yt-1

Xt

Yt

Xt+1

Yt+1

Markov chain (top).
Hidden Markov chain
(bottom).

Xt-1

Yt-1

Xt

Yt

Xt+1

Yt+1

Zt-1 Zt Zt+1

Double hidden Markov chain.
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D-separation in Markov models

With the following model:

Xt-1

Yt-1

Xt

Yt

Xt+1

Yt+1

Is {Xt−1} D-separated from {Yt+1} by ...

{Xt}?
{Yt}?
{Xt,Yt}?
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D-separation in Markov models (II)

With the following model:
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D-separation in Markov models (III)

With the following model:
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D-separation in Markov models (III)

With the following model:

Xt-1

Yt-1

Xt

Yt
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D-separation in Markov models: summary

Is {Xt−1} D-separated from {Yt+1} by (left column) in (top row)?

{Xt}

{Yt}

{Xt,Yt}

Xt-1

Yt-1

Xt

Yt

Xt+1

Yt+1

Yes

No

Yes

Xt-1

Yt-1

Xt

Yt

Xt+1

Yt+1

No

Yes

Yes

Xt-1

Yt-1

Xt

Yt

Xt+1

Yt+1

No

No

Yes

(Corresponds to Exercise 1.16.)
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Markov blanket (or boundary)

Model example:

A B C D

E
F G

H

I J K
L

For a given node K, what is the minimal set of variables BK so that:

p(K|all except K) = p(K|BK)?
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A B C D

E
F G

H

I J K
L

For a given node K, what is the minimal set of variables BK so that:

p(K|all except K) = p(K|BK)? BK = {G}

For L? BL = {F,G,H} because F,G,H are parents of L.
For C? BC = {B,D, F} because B (F,D) is parent (children) of C.
For E? BE = {A,B, I, J} because A,B (I) are parents (children) of E
and J is co-parent of E.
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Markov blanket: definition

Remark 1.13: TheMarkov blanket is the minimal set that D-separates a
set of nodes from the rest of the graph.

A B C D

E
F G

H

I J K
L

A B C D

E
F G

H

I J K
L

A B C D

E
F G

H

I J K
L

Remark 1.14: Construction of the Markov blanket. Given a directed
acyclic graph, and a node x on that graph, the Markov blanket of x, Bx is
the set of all parents, children and co-parents of x.
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