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Tutorial Outline

Today'’s outline

Introduction [15 min] — Xavi

Pratrical Deep Regression Guidelines [10 min] — Xavi

Robust deep Regression with Probabilistic Models [20 min] — Xavi
Basics of Image and Video Generation [10 min] — Stéphane
Pose-based Human Image Generation [15 min] — Stéphane

Video generation: Image Animation [15 min] — Stéphane

©0 00000

Conclusions [5 min] — Stéphane

Please do not hesitate to ask questions on the fly!!!

Slides will be available at http://xavirema.eu.



Introduction




What is regression

The task of regression is that of fitting a functional relationship between two
continuous variables.

y = f(x;0), (1)

where:

o z € R! and y € R? are input and output variables,
o f is the function used to model the regression problem,

@ 0 are the parameters of the function to be learned.

Examples:




Types of models

Linear regression (simplest type): Non-linear regression — more generic
(it could be a deep network):
y=Ax+0b,
y=f(z;0),

where A € RO b e RO, and ; o
therefore 8 = {A,b}. f:R" - R".

Need to fit the parameters — Set a loss and an optimisation problem.

*Images from Laerd Statistics



Fitting the parameters

The parameters 6 should be estimated, we require:

o aset T = {(xn,yn)}2_; of input-output training pairs,
e a sample loss £ : R® x R — R*.



Fitting the parameters

The parameters 6 should be estimated, we require:

o aset T = {(xn,yn)}2_; of input-output training pairs,
e a sample loss £ : R® x R — R*.

The aim is to minimise the empirical risk:

0" = arg mein R(6), R(6) = % Z L(f(n;0),Yn)- (2)



Fitting the parameters

The parameters 6 should be estimated, we require:
o aset T = {(xn,yn)}2_; of input-output training pairs,

e a sample loss £ : R® x R — R*.

The aim is to minimise the empirical risk:

0" =agminRO),  RO) =1 > LU@uOm). ()

Optimisation techniques (depend on L, f and 6):

@ close-form,
@ gradient-descent, stochastic GD, mini-batch GD,

@ expectation-minimsation algorithm,

or a combination of the above.



Robustness to outliers

An outlier does not follow the data distribution: (z,,y.) % p(x,y)

Robustness to outliers:

@ use loss functions that reduce the impact on the training,

@ detect and remove outliers in advance.



Examples of outliers

In age estimation (bad annotations):

(b) 14 (c) 60 (d) 62

In fashion landmark detection (bad input format):




Practical Guidelines for Deep Regression




(Deep) Regression problem

Recall: T = {(a:n,yn)}f:le, where z,, € R! and y,, € R°.
In deep regression, f(-;0) : R — R is a deep neural network.

The standard loss used is the Ly norm, leading to:

N
* . . _ 2
0" = argmn 3 1F(@0i0) ~ o ©)

How do we evaluate the significancy of the results? How do we asses that one
deep regression method is better than another one?



Significancy

Standard evaluation “protocol”: single run, report the mean (perhaps variance)
— not enough!!!

Our protocol: five runs, Wilcoxon signed-rank test, 95% confidence interval for
the median of the MAE.

Run 1 Run 2 Run 3 Run 4 Run 5
Method 1 | I | I I | ern = Ifi(mn) — ynl\z
Method 2 | [ [ [ [ | czn = [1f2(@a) —unll
Difference I H || H H | d12,n = €1,n —€2n

If the two methods are equivalent, the random variable di2 , is symmetric.

Otherwise the methods are not equivalent
— we pick the one with lower median error.



What is being tested?

For two network baselines (VGG16, ResNet51) and three tasks (head pose,
facial & body landmark).

@ Optimisation:
o Four stochastic optimisation techniques.
e Four batch sizes.

@ Architecture options:
o Fine-tuning depth.
o Use of batch-normalisation.
e Input and output representation of the regression
(pooling, heatmap, flatten).
Regressed layer.
Use of dropout.
o The regression loss.

@ Several data pre-processing methods (depending on the data set).

This implies 600+ runs and takes roughly 64 days on TITAN X.



Lots of results
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1/3 of the paper are tables and figures — good luck ;)



Well-known:

@ The larger BS the better.
e BN is crucial.

@ Always mirror your data.



Well-known:

@ The larger BS the better.
e BN is crucial.

@ Always mirror your data.
More interesting:

@ Adam is the best optimisation choice.
@ How you use dropout for VGG is not that crucial, but you must use it!!!

@ There is a data-dependent balance between over/underfitting when
chosing the fine-tuning depth.

@ Do not regress from feature maps, rather from FC/GP features
(except for heat-map regression).



No more hand-crafting...

DeepNets are awesome because we do not need to hand-craft features (yey!).

VGG and ResNet relative difference of best and worst strategies.
Performance increase of recent publications.
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DO-dropout, FT-fine tuning, RL-regressed layer, TIR-target/input repr., L-loss, Data-Preproc.

We observe a HUGE performance variation depending on the data
pre-processing — mind your pre-processing.



Robust Deep Regression with Probabilistic Models




What about noise?

Motivation: Clean annotations for large-scale datasets are expensive (and not
realistic). How to train a deep regression method robustly to noise?

Age Estimation Dataset

QIEL.0.
52 62 29
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realistic). How to train a deep regression method robustly to noise?
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Limitations of standard deep regression

Standard way: deep model + linear regression layer + Lo loss:

5

L
CNN §| L, loss 2
Backbone =
%o Regression Residual 5
(a) Standard Deep Regression Model (b) Residual gradient

The larger the gradient, the more attention the network pays to it.
Gradient of the Lo loss is 29, twice the residual.

Outliers have huge residual = The network pays a lot of attention.



Existing solutions

Let's take a look to existing solutions:

10 L,

Loss derivative

Regression Residual
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Existing solutions

Let's take a look to existing solutions:

10 L2
Huber .

2 L2 /Huber large gradient for large §.
K Tukey
g Tukey not flexible/interpretable.
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Existing solutions

Loss derivative

Let's take a look to existing solutions:

10

Regression Residual

L,
Huber
Tukey

GUM

Ly /Huber large gradient for large §.
Tukey not flexible/interpretable.

Gaussian-Uniform Mixtures (GUM)

offer a family of interpretable losses.



Existing solutions

Let's take a look to existing solutions:

10 L,

i} Huber Lo /Huber large gradient for large §.

E Tuke: “ikey not flexible/interpretable.

5] @

a ~n-Uniform Mixtures (GUM)
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Gaussian Uniform Mixtures

Hypothesis: inliers <+ Gaussian outliers <+ Uniform.
PYn,Tn;v,0) = p N(yw — 0(2,:0);0,5) + (1 —p) Ulyn — d(zn;0);7),
~—~ ~——
Inlier prior Outlier prior



Gaussian Uniform Mixtures

Hypothesis: outliers <+ Uniform.
P(Yn, Tn;v,0) = + (1= p) U(yn — ¢(zn;0);7),
~—~ ——
Inlier prior Outlier prior

¢(+;0): forward with weights 0
v ={p,X,v}: parameters of GUM

Challenge: How to learn 8 and v?




How to train? (I)

Main idea: Expectation-maximisation (EM).
Latent variable z, = 1 inlier, z, = 0 outlier.

E-step: 7 (v\") = p(2n = 1|0, yn, 7).

(") =

+ (1 — pNU(yn — (03 0); 7))




How to train? (II)

Main idea: Expectation-maximisation (EM).

M-v step: update v:
N

P Z V)

£+ = Z P07 = B3 07)) (g — $(n; 07)) T
~ is updated to fit the variance of the detected outliers.

M-0 step: update 6 by minimising

Leum = ZT VN lyn — (a3 0)]1%.



How to train? (II)

Main idea: Expectation-maximisation (EM).

M-v step: update v:
N

P Z V)

£+ = Z P07 = B3 07)) (g — $(n; 07)) T
~ is updated to fit the variance of the detected outliers.

M-0 step: update 6 by minimising

Leum = ZT VN lyn — (a3 0)]1%.

What is wrong?



Expected complete-data log-likelihood

M-step starts from:

N
Q™) =D Byt o ) {P(zn, @ny yn 1)}
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Expected complete-data log-likelihood

M-step starts from:
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Expected complete-data log-likelihood

M-step starts from:

N
Q™) =D Byt o ) {P(zn, @ny yn 1)}

n=1

=0t (o= ) o) + (=) 0= )

+ 371 = (1)) logU(yn — (3 0);7)

Then,
Q= Zr D) (g = $(n;0) TS (yn — Ban 0)
20 = GUM —n . Yn n Yn n;
and not:

N
Leum = ZT ﬂfme))—r(yn @(xn; 0 Z Hyn $n§9)‘|2~



Why X7 matters?

0%°0
0 0p°
0 o0
1. Set of regression errors
{yn — ¢(xn; 9)}5:1
& Outliers
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Why X7 matters?

° °
° 1. Set of regression errors
%o {yn — S(an; O}
OOO ° Yn n; V) fn=1
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0, Right: Normalise error by 1.




Why X7 matters?

° ° 1. Set of regression errors
N
4%%0 [y — Olwn; OOHL,
o0 0pC & Outliers
0 o0
o 2. Compute X
%°0 %° : - .
ooo ° . S Right: Normalise error by 7.
o ° OO OOOO X
Left: Do not normalise error.

If we normalise, error directions that occur often are ignored.



Results with synthetic outliers (I)

Original data: LFW and Net' facial landmark datasets.

Three types of synthetic outliers:

NGO Normally Generated Outliers: a % of the landmarks are contaminated with
a Gaussian displacement.
I-UGO Local Uniformly Generated Outliers: same as NGO with uniform
displacement.
g-UGO Global UGO: all landmarks of a % of images is contaminated with uniform
displacement.

The % goes from 0 to 60. We report the failure rate (the method’s error is
larger than 5% of the image size).

Because we contanimate the data, we know which observations are outliers,
and we can compute the precision and recall.

1Sun, VY., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection.
In: CVPR (2013)



Results with synthetic outliers (II)

e—e Biweight[30] e—eHuber e—Ly  e—eDeepGUM <—<Recall o @Precision
80| /,/ s
60| — I/
40| ///
o V.
-
e T
g e =
wl
o
R NN \ £
&0l ‘} : & S N o TEine 1
40| ‘:‘: - 40| = 40| N k‘
20 20| B 20| -
Te -
10 20 30 40 50 10 20 30 40 50 10 20 30 40 —= 50
I-UGO g-UGO NGO

@ DeepGUM is much better (for uniform) than the other robust losses.

@ For Gaussian outliers is comparable/better/worse dependeing.

@ The breakdown point is quite high.




Results on Fashion Landmark Detection (I)

Fashion landmark dataset.?

Mean absolute error on the upper-body subset of FLD, average per landmark.
Legend: left (L) and right (R) collar (C), sleeve (S) and hem (H).
*** Denotes statistical significance with p < 0.001.

Method Upper-body landmarks
LC RC LS RS LH RH Avg.

DFA® (L,) 15.90 15.90 30.02 29.12 23.07 22.85 22.85
DFA (5 VGG) 10.75 10.75 20.38 10.93 15.90 16.12 15.23

Lo 12.08 12.08 18.87 18.91 16.47 16.40 15.80
Huber* 14.32 13.71 20.85 19.57 20.06 19.99 18.08
Biweight® 13.32 13.29 21.88 21.84 18.49 18.44 17.88
DeepGUM 11.97"**  11.99"**  18.59"**  18.50"* 16.44™** 16.29"** 15.63"""

2Liu, Z., Luo, P, Qiu, S., Wang, X., Tang, X.: Deepfashion: Powering robust clothes recogni-
tion and retrieval with rich annotations. In: CVPR (2016)

3Liu, Z., Yan, S., Luo, P., Wang, X., Tang, X.: Fashion Landmark Detection in the Wild. In:
ECCV (2016)

“Huber, P.J.: Robust estimation of a location parameter. The annals of mathematical statistics
pp. 73101 (1964)

SBeIagiannis, V., Rupprecht, C., Carneiro, G., Navab, N.: Robust optimization for deep re-
gression. In: ICCV (2015)



Results on Fashion Landmark Detection (II)

Outliers detected by DeepGUM



Results on Head Pose Estimation

Experiments on the McGill dataset.®

Report the Mean Absolute Error and the Root Mean Squared Error.
*** Denotes statistical significance with p < 0.001.
t Denotes the use of extra training data.

Method MAE RMSE
Xiong et al."f - 29.8147.73
Zhu and Ramanan®f - 35.70 + 7.48
Demirkus et al.’ - 12.41 + 1.60
Drouard et al.’ 12.22 +6.42  23.00 £ 9.42
Lo 8.60+1.18 12.03+1.66
Huber 811+1.08 11.79+1.59
Biweight 781+1.31 11.56+1.95
DeepGUM*** 761+1.00 11.37+1.34

6Demirkus, M., Precup, D., Clark, J.J., Arbel, T.: Hierarchical temporal graphical model for
head pose estimation and subsequent attribute classification in real-world videos. CVIU (2015)

"Xiong, X., De la Torre, F.: Supervised descent method and its applications to face alignment.
In: CVPR. (2013)

8Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild.
In: CVPR. pp. 28792886 (2012)

9Drouard, V., Horaud, R., Deleforge, A., Ba, S., Evangelidis, G.: Robust head-pose estimation
based on partially-latent mixture of linear regressions. TIP 26, 14281440 (2017)



Results on Age Estimation (I)

Experiments on the CACD dataset.!®

Report the Mean Absolute Error.
*** Denotes statistical significance with p < 0.001.

Method MAE
Lo 5.75
Huber 5.59
Biweight 5.55
Dex!! 5.25

DexGUM™*** 5.14
DeepGUM™™™  5.08

©Chen, B.C., Chen, C.S., Hsu, W.H.: Cross-age reference coding for age-invariant face recog-
nition and retrieval. In: ECCV (2014)

HRothe, R., Timofte, R., Van Gool, L.: Deep expectation of real and apparent age from a single
image without facial landmarks. 1JCV (2016)



Results on Age Estimation (II)

R -
(w) 60 (x) 60 (y) 60 (z) 62
Outliers detected by DeepGUM



From low- to high-dimensional regression

In classical regression, even when addressed with deep architectures, we have
input dimension much higher than output (age estimation, head pose
estimation, landmarks).

Recent CNN allow to address regression problems with both input and output
being high-dimensional spaces (image-to-image). The second half of the talk
deals with that.
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