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Abstract

Transformer networks have proven extremely powerful
for a wide variety of tasks since they were introduced. Com-
puter vision is not an exception, as the use of transform-
ers has become very popular in the vision community in
recent years. Despite this wave, multiple-object tracking
(MOT) exhibits for now some sort of incompatibility with
transformers. We argue that the standard representation
– bounding boxes – is not adapted to learning transform-
ers for MOT. Inspired by recent research, we propose Tran-
sCenter, the first transformer-based architecture for track-
ing the centers of multiple targets. Methodologically, we
propose the use of dense queries in a double-decoder net-
work, to be able to robustly infer the heatmap of targets’
centers and associate them through time. TransCenter
outperforms the current state-of-the-art in multiple-object
tracking, both in MOT17 and MOT20. Our ablation study
demonstrates the advantage in the proposed architecture
compared to more naive alternatives. The code will be made
publicly available.

1. Introduction
The task of tracking multiple objects, usually understood

as the simultaneous inference of the position and identity
of various persons in a visual scene recorded by one or
more cameras, became a core problem in computer vision
in the past years. Undoubtedly, the various multiple-object
tracking (MOT) challenges and associated datasets [40, 10],
helped foster research on this topic and provided a standard
way to evaluate and monitor the performance of the meth-
ods proposed by many research teams worldwide.

In line with recent progress in computer vision us-
ing transformers [54] for tasks such as pedestrian detec-
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(a) TransCenter (Ours) (b) TransTrack [50]

(c) CenterTrack [66] (d) FairMOT [63]

Figure 1: Results of state-of-the-art MOT methods: (a),
(c) and (d) are center heatmaps of TransCenter (Ours),
CenterTrack [66] and FairMOT [63] respectively, (b)
shows the bounding boxes centers from the queries in
TransTrack [50]. Previous transformer-based tracking
methods [50, 39] use spare queries, leading to miss de-
tections (pink arrow), that are heavily overlapped, possibly
leading to false detections (green arrow). Previous MOT
center trackers [63, 66] suffer from the same problems be-
cause the centers are estimated independently of each other.
TransCenter is designed to mitigate these two adverse ef-
fects by using dense (pixel-level) multi-scale queries to en-
able heatmap-based inference and exploiting the attention
mechanisms to introduce co-dependency between center
predictions.

tion [7, 67, 34], person re-identification [24] or image su-
per resolution [60], we are interested in investigating the
use of transformer-based architectures for multiple-object
tracking, as recent evidence [50, 39] demonstrated the inter-
est of exploring the use of such architectures for this task.
However, we argue that the pedestrian representation used
so far is not appropriate for learning transformer-based ar-
chitectures for MOT. Indeed, TransTrack [50] and Track-
Former [39] use bounding boxes to represent pedestrians,
which is very intuitive since bounding-box is a wide-spread
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representation for MOT for instance in combination with
probabilistic methods [45, 2] or deep convolutional archi-
tectures [3, 59, 44, 42, 55, 18, 62, 48]. One of the promi-
nent drawbacks of using bounding boxes for tracking mul-
tiple objects manifests when dealing with very crowded
scenes [10], where occlusions are very difficult to handle
since ground-truth bounding boxes often overlap each other.
This is problematic because these bounding boxes are used
during training, not only to regress the position, width, and
height of each person but also to discriminate the visual ap-
pearance associated to each track. In this context, overlap-
ping bounding boxes mean training a visual appearance rep-
resentation that combines the visual content of two or even
more people [23, 22]. Certainly, jointly addressing the per-
son tracking and segmentation tasks [39] can partially solve
the occlusion problem. However, this requires to have extra
annotations – segmentation masks – which are very tedious
ans costly to obtain. In addition, such annotations are not
available in standard benchmark datasets [40, 10].

In this paper, we get inspiration from very recent re-
search in MOT [66, 63] and choose to devise a transformer-
based architecture that can be trained to track the cen-
ter of each person, and name it TransCenter. Therefore,
the main difference with respect to TransTrack [50] and
TrackFormer [39], developed directly from object detec-
tion transformers [67] and [7] respectively, is that Tran-
sCenter is conceived to mitigate the occlusion problem
inherent to bounding-box tracking without requiring ex-
tra ground-truth annotations such as segmentation masks.
While this intuition is very straightforward, designing an ef-
ficient transformer-based architecture that implements this
intuition is far from evident.

Indeed, the first challenge is to be able to infer dense
representations (i.e. center heatmaps). To do so, we pro-
pose the use of dense (pixel-level) multi-scale queries. In
addition to allowing heatmap-based MOT, the use of dense
queries overcomes the limitations [7, 67] associated with
querying the decoder with a small number of queries. In-
spired by [50], TransCenter has two different decoders: one
for person detection and another one for person tracking.
Both decoders are given queries that depend on the cur-
rent image, but they are extracted with different learnable
layers. However, while the memory (i.e. the output of the
transformer encoder) of the current frame is given to the de-
tection decoder, the memory of the previous frame is given
to the tracking decoder.

Overall, this paper has the following contributions:
• We propose the use of transformers for multiple-object

center tracking and term this architecture TransCenter.
• To infer position heatmaps, we propose the use of

dense multi-scale queries that are computed from the
encoding of the current image using learnable layers.

• TransCenter sets a new state-of-the-art baseline among

online MOT tracking methods in MOT17 [40]
(+10.1% multiple-object tracking accuracy, MOTA) as
well as MOT20 [10] (+5% MOTA), leading both MOT
competitions. Moreover, to our knowledge, Tran-
sCenter sets the first transformer-based state-of-the-art
baseline in MOT201, thanks to its ability to track in
crowded scenes.

2. Related Works
2.1. Multiple-Object Tracking

In MOT literature, initial works [2, 45, 1] focus on how
to find the optimal associations between detections and
trackelets through probabilistic models while [41] first for-
mulates the problem as an end-to-end learning task with
recurrent neural networks. Moreover, [47] models the dy-
namics of objects by a recurrent network and further com-
bines the dynamics with an interaction and an appearance
branch. [59] proposes a framework to directly use the stan-
dard evaluation measures MOTA and MOTP as loss func-
tions to backpropagate the errors for an end-to-end tracking
system. [3] employs object detection methods for MOT by
modeling the problem as a regression task. A person re-
identification network [53, 3] can be added at the second
stage to boost the performance. However, it is still not opti-
mal to treat the person re-identification as a secondary task.
[63] further proposes a framework that treats the person de-
tection and re-identification task equally.

Moreover, traditional graphs are also used to model the
positions of objects as nodes and the temporal connection of
the objects as edges [25, 53, 51, 29, 52]. The performance
of those methods is further boosted by the recent rise of
Graph Neural Networks (GNNs): hand-designed graphs are
replaced by learnable GNNs [56, 57, 55, 43, 6] to model the
complex interaction of the objects.

In most of the methods above, bounding boxes are used
as object representation for the network. However, it is not
a satisfying solution because it creates ambiguity when ob-
jects occlude each other, or noisy background information is
included. CenterTrack [66] and FairMOT [63] represent ob-
jects as heatmaps then reasons about all the objects jointly
and associate heatmaps across frames.

2.2. Transformers in Vision

Transformer is first proposed by [54] for machine trans-
lation, and has shown its ability to handle long-term com-
plex dependencies between sequences by using multi-head
attention mechanism. With its great success in natural lan-
guage processing, works in computer vision start to investi-
gate transformers for various tasks, such as image recogni-
tion [14], person re-identification [24], realistic image gen-

1TrackFormer [39] is tested on MOT20S, which are sequences from
MOT17 containing far less crowded scenes than MOT20.
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Figure 2: Overview of TransCenter. Images at t and t − 1 are fed to a CNN backbone to produce multi-scale features, then
processed by a deformable encoder to produce memory Mt and Mt−1 respectively. Mt is used to compute dense multi-scale
detection and tracking queries (DQt and TQt) through two query learning networks (QLN). DQt and TQt are fed to the
detection and tracking deformable decoders respectively, together with Mt and Mt−1. The outputs are multi-scale detection
and tracking features (DFt and TFt) and are used to estimate the center heatmap and object sizes. Both multi-scale features,
together with the center heatmap at t− 1 are used to estimate the displacement vector for each center.

eration [27], super resolution [60] and audio-visual learn-
ing [17, 16].

Object detection with Transformer (DETR) [7] can be
seen as an exploration and correlation task. It is an encoder-
decoder structure where the encoder extracts the image in-
formation and the decoder finds the best correlation be-
tween the object query and the encoded image features with
an attention module. However, the attention calculation
suffers from heavy computational and memory complex-
ities w.r.t the input size: the feature map extracted from
a ResNet [21] backbone is used as the input to alleviate
the problem. Deformable DETR [67] tackles the issue by
proposing a deformable attention inspired by [9], drastically
speeding up convergence (10×) and reducing the complex-
ity. This allows to capture finer details by using multi-scale
features, yielding better detection performance.

Following the success in detection using transformers,
two concurrent works directly apply transformers on MOT
based on DETR framework. First, Trackformer [39] builds
directly from DETR [7] and is trained to propagate the
queries through time. Second, Transtrack [50] extends [67]
to MOT by adding a decoder that processes the features at
t − 1 to refine previous detection positions. Importantly,
both methods stay in the detection framework and use it for
tracking, a strategy that have proven successful in previous
works [59, 3]. However, recent literature [66, 63] also sug-
gests that bounding boxes may not be the best representa-
tion for MOT, and this paper investigates the use of trans-
formers for center tracking, thus introducing TransCenter.

3. TransCenter for Multiple Object Tracking
We are motivated to investigate the use of transformers

for multiple-object tracking. As described in the introduc-

tion, previous works in this direction attempted to learn to
infer bounding boxes. We question this choice, and ex-
plore the use of an alternative representation very popu-
lar in the recent past: center heatmaps. However, differ-
ently from bounding boxes, heatmaps are dense rather than
sparse representations. Consequently, while [50, 39] used
sparse object queries, we introduce the use of dense multi-
scale queries for transformers in computer vision. Indeed,
up to our knowledge, we are the first to propose the use of
a dense query feature map that scales with the input im-
age size. To give a figure, in our experiments the decoders
are queried with roughly 14k queries. One downside of us-
ing dense queries is the associated memory consumption.
To mitigate this undesirable effect, we propose to use de-
formable decoders, inspired by deformable convolutions.

More precisely, we cast the multiple-object tracking
problem into two separate subtasks: the detection of ob-
jects at time t, and the association with objects detected at
t − 1. Different from previous studies following the same
rationale [3, 59], TransCenter addresses these two tasks in
parallel, by using a fully deformable dual decoder architec-
ture. The output of the detection decoder is used to estimate
the object center and size, while it is combined with the out-
put of the tracking decoder to estimate the displacement of
the object w.r.t. the previous image. An important conse-
quence of combining center heatmaps with the use of a dual
decoder architecture is that the object association through
time depends not only on geometry features (e.g. IOU) but
also on the visual features from the decoder.

3.1. TransCenter in a Nutshell

The overall architecture of TransCenter can be seen in
Figure 2. The RGB images at time t and t − 1 are fed to
a CNN backbone to produce multi-scale features and cap-

3



Figure 3: Overview of the center heatmap branch. The
multi-scale detection features are upscaled and merged via
a series of deformable convolutions, into the output center
heatmap. A similar strategy is followed for the object size
and the tracking branches.

ture finer details in the image as done in [67] and then to
a deformable self-attention encoder, thus obtaining multi-
scale memory feature maps associated to the two images,
Mt and Mt−1 respectively. Then, Mt is given to a query
learning network (QLN), which are fully connected layers
operating pixel-wise, that outputs a feature map of dense
multi-scale detection queries, DQt. These go through an-
other QLN to produce a feature map of dense multi-scale
tracking queries, TQt. A fully deformable dual decoder ar-
chitecture is then used to process them: the deformable de-
tection decoder compares the detection queries DQt to the
memory Mt to output multi-scale detection features DFt,
and the deformable tracking decoder does the same with
the tracking queries TQt and the memory Mt−1 to out-
put multi-scale tracking features TFt. The detection multi-
scale features are used to estimate the bounding box size St
and the center heatmap Ct. Together with the tracking fea-
tures and the center heatmap, Ct−1, the detection features
are also used to estimate the tracking displacement Tt.

In the following we first explain the design of the dense
multi-scale queries, then the architecture of the fully de-
formable dual decoder, the three main branches – center
heatmap, object size, and tracking – and finally the train-
ing losses.

3.2. Dense Multi-scale Queries

Traditional transformer architectures output as many el-
ements as queries fed to the decoder, and more importantly,
these outputs correspond to the entities sought (e.g. pedes-
trian bounding boxes). When inferring center heatmaps, the
probability of having a person’s center at a given pixel be-

comes one of these sought entities, thus requiring the trans-
former decoder to be fed with dense queries. Such queries
are obtained from the multi-scale encoder’s memory, via a
first query learning network (QLN), which is a feed-forward
network operating pixel-wise, obtaining DQt. We use two
different queries for the dual decoder: a second QLN pro-
cesses DQt to obtain TQt. They will be fed to the fully
deformable dual decoder, see Sec. 3.3.

The fact that the dense query feature map resolution is
proportional to the resolution of the input image has two
prominent advantages. First, the queries can be multi-scale
and exploit the multi-resolution structure of the encoder,
allowing for very small targets to be captured by those
queries. Second, dense queries also make the network more
flexible since it is able to adapt to arbitrary image size. More
generally, the use of QLN avoids the problem of manually
sizing the queries and selecting beforehand the number of
maximum detection, as it was done in previous transformer
architectures (for computer vision).

3.3. Fully Deformable Dual Decoder

To successfully find object trajectories, a MOT method
should not only detect the objects but also associate them
across frames. To do so, TransCenter proposes to use a
fully deformable dual decoder. More precisely, two fully
deformable decoders deal in parallel with the two subtasks:
detection and tracking. While the detection decoder corre-
lates DQt and Mt with the attention modules to detect ob-
jects in the image It, the tracking decoder correlates TQt

and Mt−1 to associate the detected objects to their position
in the previous image It−1. Specifically, the detection de-
coder searches for objects in multi-scale Mt with the atten-
tion correlated to the multi-scale DQt and then outputs the
multi-scale detection features DFt, used to find the object
centers and box sizes. Differently, the deformable track-
ing decoder finds the objects in Mt−1 and associates them
with the objects at t. To do this, the multi-head deformable
attention in the tracking decoder performs a temporal cross-
correlation between the multi-scale TQt and Mt−1 and
outputs the multi-scale tracking features TQt, containing
the temporal information that is used in the tracking branch
to estimate the displacements from time t back to t− 1.

Both the detection and tracking decoders input a dense
query feature map so as to output dense information as well.
However, the use of the multi-head attention modules used
in traditional transformers [54] in TransCenter implies a
memory and complexity growth that is quadratic with the
input image size O(H2W 2). Of course this is undesirable
and would limit the scalability and usability of the method,
especially when processing multi-scale features. Naturally,
we resort to deformable multi-head attention, thus leading
to a fully deformable dual decoder architecture.
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3.4. The Center, the Size and the Tracking Branches

The output of the two fully deformable decoders are two
sets of multi-scale features, referred to as the detection DFt
and tracking features TFt . More precisely, these multi-
scale features contain four feature maps at different reso-
lutions, namely 1/64, 1/32, 1/16 and 1/8 of the input im-
age resolution. For the center heatmap and the object size
branches, the feature maps at different resolutions are com-
bined using deformable convolutions and bilinear interpo-
lation, following the architecture shown in Figure 3, into a
a feature maps of 1/4 of the input resolution, and finally
into Ct ∈ [0, 1]H/4×W/4 and St ∈ RH/4×W/4×2 (the two
channels of St encode the width and the height). Regard-
ing the tracking branch, the two multi-scale features follow
the same up-scaling as in the two other branches (but with
different parameters), obtaining two feature maps at resolu-
tion 1/4. These two feature maps are concatenated to the
previous center heatmap Ct−1 downscaled to the resolution
of the feature maps. As in the other branches, a block of
convolutional layers computes the final output, i.e. the dis-
placement of the objects Tt ∈ RH/4×W/4×2 where the two
channels encode the horizontal and vertical displacements
respectively.

3.5. Training TransCenter
Training TransCenter is achieved by jointly learning a

classification task for the object center heatmap and a re-
gression task for the object size and tracking displacements,
covering the branches of TransCenter. For the sake of clar-
ity, in this section we will drop the time index t.

Center Focal Loss In order to train the center branch,
we need first to build the ground-truth heatmap response
C∗ ∈ [0, 1]H/4×W/4. As done in [66], we construct C∗

by considering the maximum response of a set of Gaussian
kernels centered at each of the K > 0 ground-truth object
centers. More formally, for every pixel position (x, y) the
ground-truth heatmap response is computed as:

C∗
xy = max

k=1,...,K
G((x, y), (xk, yk);σ), (1)

where (xk, yk) is the ground-truth object center, and
G(·, ·;σ) is the Gaussian kernel with spread σ. In our
case, σ is proportional to the object’s size, as described
in [30]. Given the ground-truth C∗ and the inferred C cen-
ter heatmaps, the center focal loss, LC is formulated as:

LC =
1

K

∑
xy

{
(1−Cxy)

α log(Cxy) C∗
xy = 1,

(1−C∗
xy)

β(Cxy)
α log(1−Cxy) otherwise.

(2)
where the scaling factors are α = 2 and β = 4, see [63].

Sparse Regression Loss The values of S and T are super-
vised only on the locations where object centers are present,

i.e. C∗
xy = 1 using a L1 loss:

LS =
1

K

∑
xy

{∥∥Sxy − S∗
xy

∥∥
1

C∗
xy = 1,

0 otherwise.
(3)

The formulation of LT is analogous to LS but using the
tracking output and ground-truth, instead of the object size.
To complete the sparsity of LS, LT, we add an extra L1 re-
gression loss, denoted as LR with the bounding boxes com-
puted from St and ground-truth centers. The impact of this
additional loss is marginal as shown in Section 4.4.

In summary, the overall loss is formulated as the
weighted sum of all the losses, the weights are chosen ac-
cording to the numeric scale of each loss:

L = LC + λSLS + λTLT + λRLR (4)

4. Experimental Evaluation
4.1. Implementation Details

Inference with TransCenter Once the method is trained,
we detect objects by filtering the output center heatmap Ct.
Since the datasets are annotated with bounding boxes, we
need to convert our estimates into this representation. In
detail, we apply a threshold τ = 0.5 to the heatmap, thus
producing a list of center positions {ct,k}Kt

k=1. We extract
the object size st,k associated to each position ct,k in St.
The set of detections produced by TransCenter is directly
Dt = {ct,k, st,k}Kt

k=1. Once the detection step is per-
formed, we can estimate the position of the object in the
previous image extracting the estimated displacement tt,k
from the tracking branch output Tt and the center position
ct,k. Indeed, we can construct a set of detections tracked
back to the previous image D̃t−1 = {ct,k + tt,k, st,k}Kt

k=1.
Finally we use the Hungarian algorithm to match the detec-
tions at the previous time step Dt−1 with the tracked-back
detection D̃t−1 to associate the tracks through time. The
birth and death processes are naturally integrated in Tran-
sCenter: Detections not associated to previous detections
give birth to new tracks, while unmatched previous detec-
tions are put to sleep for at most T = 60 frames before be-
ing discarded. New tracks are compared to sleeping tracks
by means of an external re-identification network from [3]
trained only on MOT17 [40], whose impact is ablated in the
experiments.

Network and Training Parameters The input images are
resized to 640 × 1088. Both the encoder and the decoder
have six layers with hidden dimension h = 256 with eight
attention heads. The query learning networks consist of two
fully connected layers with ReLU activation. Our CNN
backbone is ResNet-50 [21]. TransCenter is trained with
loss weights λS = 0.1, λR = 0.5 and λT = 1.0 by
the AdamW optimizer [37] with learning rate 2e−5 for the
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Table 1: Results on MOT17 [40]. The left and right halves of the table correspond to public and private detections respec-
tively. The cell background color encodes the amount of extra-training data: green for none, orange for one extra dataset, red
for five extra datasets. Methods with * are not associated to a publication. The best result within the same training conditions
(background color) is underlined. The best result among published methods is in bold. Best seen in color.

Public Detections Private Detections

Method Data MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Data MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓

TransCenter (Ours) CH 71.9 81.4 62.3 38.0 22.7 17,378 137,008 4,046 CH 73.2 81.1 62.2 40.8 18.5 23,112 123,738 4,614

*TrackFormer [39] CH 61.8 59.8 35.4 21.1 35,226 177,270 2,982
*UnsupTrack [28] PT 61.7 78.3 58.1 27.2 32.4 16,872 197,632 1,864
MOTDT17 [8] RE 50.9 76.6 52.7 17.5 35.7 24,069 250,768 2,474
*TransTrack [50] CH 65.8 78.8 56.9 32.2 21.8 24,000 163,683 5,355
CenterTrack [66] NO 61.5 78.9 59.6 26.4 31.9 14,076 200,672 2,583 CH 67.8 78.4 64.7 34.6 24.6 18,489 160,332 3,039
FUFET [48] NO 62.0 59.5 27.8 31.5 15,114 19,6672 2,621 (5D1) 76.2 81.1 68.0 51.1 13.6 32,796 98,475 3,237
MLT [62] (5D1) 75.3 81.7 75.5 49.3 19.5 27,879 109,836 1,719
*CSTrack [33] 5D1 74.9 80.9 72.6 41.5 17.5 23,847 114,303 3,567
*FairMOT [63] 5D1 73.7 81.3 72.3 43.2 17.3 27,507 117,477 3,303
*GSDT [55] 5D2 66.2 79.9 68.7 40.8 18.3 43,368 144,261 3,318
GSM Tracktor [36] NO 56.4 77.9 57.8 22.2 34.5 14,379 230,174 1,485
Tracktor++ [3] NO 56.3 78.8 55.1 21.1 35.3 8,866 235,449 1,987
TrctrD17 [59] NO 53.7 77.2 53.8 19.4 36.6 11,731 247,447 1,947
Tracktor [3] NO 53.5 78.0 52.3 19.5 36.6 12,201 248,047 2,072
*MAT [20] NO 67.1 80.8 69.2 38.9 26.4 22,756 161,547 1,279
ChainedTracker [44] NO 66.6 78.2 57.4 32.2 24.2 22,284 160,491 5,529
TubeTK [42] NO 63.0 78.3 58.6 31.2 19.9 27,060 177,483 4,137

TransCenter (Ours) NO 68.8 79.9 61.4 36.8 23.9 22,860 149,188 4,102 NO 70.0 79.6 62.1 38.9 20.4 28,119 1 36,722 4,647

CNN backbone and 2e−4 for the rest of the network. The
training lasts 50 epochs, applying learning rate decay of
1/10 at the 40th epoch. The entire network is pre-trained
on the pedestrian class of COCO [35] and then fine-tuned
on the respective MOT dataset [40, 10]. Overall, with 2
RTX Titan GPUs and batch size 2, it takes around 1h30 and
1h per epoch of MOT20 and MOT17 respectively. We also
present the results fine-tuning with extra data, namely the
CrowdHuman dataset [49]. See the results and discussion
for details.

4.2. Protocol

Datasets and Detections We use the standard split of the
MOT17 [40] and MOT20 [10] datasets and the evaluation
is obtained by submitting the results to the MOTChallenge
website. The MOT17 test set contains 2,355 trajectories
distributed in 17,757 frames. MOT20 test set contains 1,501
trajectories within only 4,479 frames, which leads to a much
more challenging setting. We evaluate TransCenter both un-
der public and private detections. When using public detec-
tions, we limit the maximum number of birth candidates at
each frame to be the number of public detections per frame,
as in [66, 39]. The selected birth candidates are those clos-
est to the public detections with IOU larger than 0. When
using private detections, there are no constraints, and the
detections depend only on the network capacity, the use of
external detectors, and more importantly, the use of extra
training data. For this reason, we regroup the results by the
use of extra training datasets as detailed in the following.

Extra Training Data To fairly compare with the state-
the-art methods, we clearly denote the extra data used

to train each method (including several pre-prints listed
in the MOTChallenge leaderboard, which are marked
with * in our result tables):2 CH for CrowdHuman [49],
PT for PathTrack [38], RE for the combination of Mar-
ket1501 [64], CUHK01 and CUHK03 [31] person re-
identification datasets, 5D1 for the use 5 extra datasets
(CrowdHuman [49], Caltech Pedestrian [13, 12], CityPer-
sons [61], CUHK-SYS [58], and PRW [65]), 5D2 is the
same as 5D1 replacing CroudHuman by ETH [15], (5D1)
uses the tracking/detection results of FairMOT [63] (trained
with in 5D1 setting), and NO for using no extra dataset.

Metrics Standard MOT metrics such as MOTA (Multi-
ple Object Tracking Accuracy) and MOTP (Multiple Ob-
ject Tracking Precision) [4] are used: MOTA is mostly used
since it reflects the average tracking performance includ-
ing the number of FPs (False positives, predicted bounding
boxes not enclosing any object), FNs (False negatives, miss-
ing ground-truth objects) and IDS [32] (Identities of pre-
dicted trajectories switch through time). MOTP evaluates
the quality of bounding boxes from successfully tracked ob-
jects. Moreover, we also evaluate on IDF1 [46] (the ratio of
correctly identified detections over the average number of
ground-truth objects and predicted tracks), MT (the ratio of
ground-truth trajectories that are covered by a track hypoth-
esis more than 80% of their life span), and ML (less than
20% of their life span).

2COCO [35] and ImageNet [11] are not considered as extra data ac-
cording to the MOTchallenge [40, 10].
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Table 2: Results on MOT20 [10]. The table is structured following the same principles as Table 1. Methods with * are not
associated to a publication. The best result within the same training conditions (background color) is underlined. The best
result among published methods is in bold. Best seen in color.

Public Detections Private Detections

Method Data MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Data MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓
TransCenter (Ours) CH 58.6 79.8 46.7 35.5 18.7 33,691 175,841 4,850 CH 58.3 79.7 46.8 35.7 18.6 35,959 174,893 4,947

*UnsupTrack [28] PT 53.6 80.1 50.6 30.3 25.0 6,439 231,298 2,178
*GSDT [55] 5D2 67.1 79.1 67.5 53.1 13.2 31,913 135,409 3,131
*CSTrack [33] 5D1 66.6 78.8 68.6 50.4 15.5 25,404 144,358 3,196
*FairMOT [63] 5D1 61.8 78.6 67.3 68.8 7.6 103,440 88,901 5,243
*GNNMatch [43] NO 54.5 79.4 49.0 32.8 25.5 9,522 223,611 2,038
Tracktor++ [3] NO 52.6 79.9 52.7 29.4 26.7 6,930 236,680 1,648
SORT [5] NO 42.7 78.5 45.1 16.7 26.2 27,521 264,694 4,470
MLT [62] NO 48.9 78.0 54.6 30.9 22.1 45,660 216,803 2,187

TransCenter (Ours) NO 57.5 79.4 47.1 35.6 18.0 40,443 174,850 4,840 NO 57.1 79.4 46.7 35.7 18.0 42,871 173,911 4,940

4.3. Results and Discussion

MOT17 Table 1 presents the results obtained on the
MOT17 [40] dataset. The first global remark is that most
state-of-the-art methods do not evaluate under both pub-
lic and private detections, and under different extra-training
data settings, while we do. Secondly, TransCenter system-
atically outperforms all other methods, in terms of MOTA,
under similar training data conditions, both for public and
private detections. Indeed, the increase of MOTA w.r.t. the
best performing published method is of 21% (10.1% tak-
ing unpublished methods into account) and 6.8% for pub-
lic detections under extra and no-extra training data, and
of 5.4% and 3.4% for private detections. If we consider
only published methods, the superiority of TransCenter is
remarkable in most of the metrics. We can also observe
that TransCenter trained with no extra-training data outper-
forms, not only the methods trained with no extra data but
also the methods trained with one extra dataset (in terms of
MOTA for both public and private detections). In the same
line, TransCenter trained on CH performances better than
two of the methods trained with five extra datasets. Overall,
these results confirm our hypothesis that heatmaps represen-
tation combined with the proposed TransCenter architecture
is a better option for MOT using transformers.

MOT20 Table 2 reports the results obtained in MOT20. In
public detections, TransCenter leads the competition both
in extra (+5% MOTA) and no-extra (+3% MOTA) train-
ing data. Another remarkable achievement of TransCenter
is the significant decrease of FP when compared to the ex-
isting methods (−50 k and beyond). Very importantly, to
the best of our knowledge, our study is the first to report
the results on MOT20 of a transformer-based architecture,
demonstrating the tracking capacity of TransCenter even in
a densely crowded scenario. For the sake of completeness,
we provide the results on MOT20 for private detections and
set a new baseline for future research for methods trained
under CH and no extra data.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Visualization of the attention from the detection
(a)-(d) decoder and the tracking (e)-(h) decoder in the cur-
rent and previous image at t− 50 (for better visualization),
respectively. The brighter the higher the attention weights.

Attention Visualization We show in Fig. 4 the attention
from different attention heads of both detection and track-
ing decoders. We can see that for the detection attention,
different heads focus on different areas of It: (a) the peo-
ple; (b), (c) the background; (d) both the background and
the people. For the tracking attention, interestingly we ob-
serve that the object information at t does correlate to the
previous image: in (f)-(h), the tracking decoder tries to look
for objects at t−1 in the surrounding of the positions of the
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(a) (b)

(c) (d)

Figure 5: Tracking results visualization of TransCenter on
MOT20 test set, in the Private Detection setting.

(a) MOT17 (b) MOT20

Figure 6: MOTA, MOTP and IDF1 ablation studies on
MOT17 and MOT20.

objects at t. In addition, it also focuses in the objects in the
previous image, as shown within the orange box in (e).

Qualitative Results We report in Fig. 5 qualitative results
on the MOT20 test set, to assess the ability of TransCen-
ter to detect and track targets in the context of crowded
scenes and highly overlapping bounding boxes. Fig 5(a)
and 5(b) are extracted from MOT20-07, Fig 5(c) and 5(d)
MOT20-08. We observe that TransCenter manages to keep
high recall, even in the context of drastic mutual-occlusions
and reliably associate detections across time.

To summarize, TransCenter exhibits outstanding results
on both MOT17 and MOT20 datasets for both public and
private detections, and for both with or without extra train-
ing data, which indicates that multiple-object center track-
ing using transformers is a promising research direction.

4.4. Ablation Study

In this section, we experimentally demonstrate different
configurations of our TransCenter. For the ablation, we
further divide the training sets into train-validation split, we
take the first 50% of frames (2,664 and 4,468 frames for
MOT17 and MOT20, respectively) as training data and test
on the last 25% (1,332 and 2,234 frames for MOT17 and

Table 3: Ablation studies on MOT17 [40] and MOT20 [10].

MOT17 MOT20

Method FP ↓ FN ↓ IDS ↓ FP ↓ FN ↓ IDS ↓

Single decoder 305 12,991 1,782 1,302 160,254 43,482
D.Detr+IOU 1,291 7,774 507 6,921 78,648 7,978
W/out LR Loss 1,279 7,090 184 5,210 79,103 1,589
W/out Reid 1,202 6,951 467 7,107 76,137 4,286
TransCenter (ours) 1,202 6,951 203 7,127 76,157 1,549

MOT20, respectively). The rest 25% frames in the middle
of the sequences are thrown to prevent over-fitting.

Single Decoder Is Not Enough We study the possibility
of using one single decoder and one set of dense multi-
scale queries to perform tracking. Using a single decoder
leads to very poor results, as shown in Figure 6 (Single De-
coder). This is because the network switches its attention
between image t and image t− 1 during training and even-
tually fails to track objects correctly at t and t − 1 (low
MOTA). More details can be found in supplementary ma-
terials. Using a single decoder for sure brings the memory
efficiency, which is not so crucial in TransCenter, thanks
to the deformable modules [67]. The overall memory con-
sumption is therefore affordable for a normal GPU setting
(see details in Sec. 4.1).

Lost Person Re-identification We use an external Re-ID
network to recover the identities which are temporally sus-
pended by the tracker. The Re-ID network is the one in [3],
pre-trained on MOT17 [40] training set. Similarly, a light-
weight optical flow estimation network LiteFlowNet [26]
pre-trained on Kitti [19] is used to recover the lost identi-
ties. This process helps us to reduce IDS, but the overall
tracking performance does not come from these externals
networks since FP, FN is not improved by them. see Tab. 3,
we even observe a performance drop of FP and FN since the
external networks were not finetuned on MOT20.

Beyond Detection We also ablate the D.Detr [67]+IOU
matching, which is to use bounding box object detection
and handcrafted geometry IOU matching method to per-
form tracking. From Figure 6, we observe that bounding
box object detector can better enclose correctly detected ob-
jects (i.e. higher MOTP). However, due to the fact that it
lacks the prior information from the past, which leads to a
higher IDS and FNs.

Without LR We evaluate the impact of the additional
bounding box regression loss LR that completes the sparse
object size loss, as discussed in Section 3.5. We observe
a slight performance drop (-0.7% MOTA for MOT17 and -
0.3% for MOT20), indicating that the two sparse regression
losses and the dense center heatmap focal loss are sufficient
to train TransCenter.
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5. Conclusion
In this paper, we introduce TransCenter, a novel

transformer-based architectures for multiple-object track-
ing. TransCenter proposed the use of dense multi-scale
queries in combination with a fully deformable dual de-
coder, able to output dense representations for the objects’
center, size and temporal displacement. The deformable de-
coder allows processing thousands of queries while keep-
ing the overall memory usage within reasonable boundaries.
Under the same training conditions, TransCenter outper-
forms all its competitors in MOT17 and MOT20, and even
exhibits comparable performance to some methods trained
with much more data.
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Furthermore, we first complete the ablation study by
showing the benefit of using dense queries. We compare
the tracking performance between the transformer-based
MOT model using image-independent sparse queries and
our TransCenter. Second, we show some qualitative results
of TransCenter. Finally, we provide the per-seq full state-
of-the-art results of our best model fine-tuned from Crowd-
Human submitted to the MOTchallenge.

A. Sparse V.S. Dense Queries Models

(a) MOT17 (b) MOT20

Figure 7: FP, FN, IDS ablation studies on MOT17, MOT20
validation of models trained on half MOT17.

Table 4: FP, FN, IDS on MOT17 and crowded scenes
MOT20 validation of models trained on half MOT17.

MOT17 MOT20

Method FP ↓ FN ↓ IDS ↓ FP ↓ FN ↓ IDS ↓

Sparse Queries [50] 1,086 7526 190 13,989 190,689 2,496
Dense Queries (ours) 1,202 6,951 203 12,337 145,546 2,889

Both models are pre-trained on CrowdHuman [49] and
finetuned on the first half of sequences of MOT17 [40]
dataset. From Fig. 7, we see that TransCenter outper-
forms the method [50] using sparse queries (+2% MOTA,
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+0.9% IDF1) on MOT17 [40]. Without fine-tuning on
MOT20 [10], we observe a great discrepancy between the
performance of the method using dense and sparse queries
(+15.2% MOTA and +6.2% IDF1).

The discrepancy is also reflected in Tab. 4, compared
to [50] in MOT20 [10], TransCenter, without training on
MOT20, can help detect much more objects (-45,143 FNs)
while having fewer FPs (-1,652). The rise of IDS is due to
the fact that we have more detected objects causing more
severe occlusions.

The reason is because of the use of pixel-level queries
correlated to the input image. Independent of the number
of objects in the image, we do not need to re-parameterize
the number of queries according to the number of ob-
jects in the image as models using image-independent
sparse queries. TransCenter thus generalizes better in more
crowded scenes.

B. Qualitative Visualization
We visualize some qualitative results in Fig. 8 and Fig. 9

on the MOT20 testset showing the capability of TransCen-
ter in tracking people in very crowded scenes.

C. Detailed Results
We provide the detailed results on MOT17 [40] (see

Tab. 5) and MOT20 [10] (see Tab. 6) testsets with Tran-
sCenter trained on CrowdHuman [49] and MOT17 trainset
or MOT20 trainset, respectively.
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(a) (b)
MOT20-04

(c) (d)
MOT20-07

Figure 8: Tracking results visualization of TransCenter on MOT20-04, MOT20-07 in the test set using the Private Detection
setting.
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(a)

(b)

MOT20-06

Figure 9: Tracking results visualization of TransCenter on MOT20-06 test set, in the Private Detection setting.
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Table 5: Per-sequence detailed results on MOT17 [40] testset for TransCenter trained on CrowdHuman [49] and MOT17 [40].
In the private detection setting, the results for DPM, SDP and FRCN are the same. We, therefore, do not specify their
associated public detections.

Sequence MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓

Pu
bl

ic
D

et
s.

MOT17-01-DPM 49.8 78.8 40.3 8 9 448 2,745 46
MOT17-01-FRCNN 49.8 78.8 40.1 8 9 480 2,709 47
MOT17-01-SDP 50.4 78.7 39.7 8 9 490 2,662 49
MOT17-03-DPM 89.6 82.0 73.8 126 5 2,514 8,167 226
MOT17-03-FRCNN 88.2 82.1 73.7 123 8 2,505 9,619 224
MOT17-03-SDP 88.9 82.0 73.0 122 9 2,731 8,697 240
MOT17-06-DPM 61.2 80.8 56.3 76 56 497 3,900 170
MOT17-06-FRCNN 63.5 80.5 56.8 82 42 543 3,552 201
MOT17-06-SDP 62.9 80.6 56.9 84 50 556 3,617 194
MOT17-07-DPM 58.7 79.4 48.1 15 8 683 6,100 190
MOT17-07-FRCNN 58.8 79.4 48.5 15 6 674 6,085 194
MOT17-07-SDP 59.8 79.3 47.7 16 6 702 5,885 197
MOT17-08-DPM 46.2 81.5 36.1 22 21 422 10,662 280
MOT17-08-FRCNN 45.7 81.6 36.5 21 21 395 10,815 269
MOT17-08-SDP 46.6 81.4 36.1 22 20 427 10,571 279
MOT17-12-DPM 59.5 84.0 62.3 30 28 334 3,121 51
MOT17-12-FRCNN 59.3 84.0 61.8 30 29 272 3,208 50
MOT17-12-SDP 59.7 83.8 61.7 30 27 361 3,077 53
MOT17-14-DPM 34.9 76.3 36.5 17 61 674 11,050 316
MOT17-14-FRCNN 36.9 75.8 37.1 19 55 843 10,445 383
MOT17-14-SDP 37.6 75.7 38.2 20 55 827 10,321 387
MOT17-all 71.9 81.4 62.3 894 (38.0%) 534 (22.7%) 17,378 137,008 4,046

Pr
iv

at
e

de
t.

MOT17-01 49.3 78.6 39.7 8 9 568 2,650 49
MOT17-03 90.6 81.8 73.5 136 0 3,410 6,116 266
MOT17-06 64.0 80.4 56.4 87 35 651 3,364 227
MOT17-07 60.0 79.2 47.9 16 6 807 5,755 200
MOT17-08 47.2 81.3 36.3 22 18 445 10,423 286
MOT17-12 57.3 83.5 60.6 30 24 666 2,963 69
MOT17-14 37.4 75.4 37.5 21 53 1,157 9,975 441
MOT17-all 73.2 81.1 62.2 960 (40.8%) 435 (18.5%) 23,112 123,738 4,614
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Table 6: Per-sequence detailed results on MOT20 [40] testset for TransCenter trained on CrowdHuman [49] and MOT20 [40].

Sequence MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓

Pu
bl

ic
D

et
s. MOT20-04 68.8 80.4 54.4 240 82 11,020 72,756 1,732

MOT20-06 46.5 78.8 34.4 88 75 12,109 57,202 1,761
MOT20-07 76.1 81.5 61.7 79 7 1,925 5,719 271
MOT20-08 35.6 77.2 30.6 34 68 8,637 40,164 1,086
MOT20-all 58.6 79.8 46.7 441 (35.5%) 232 (18.7%) 33,691 175,841 4,850

Pr
iv

at
e

de
t. MOT20-04 68.7 80.4 54.1 240 82 11,289 72,674 1,730

MOT20-06 46.0 78.7 35.3 88 75 12,947 56,915 1,801
MOT20-07 75.4 81.5 61.5 80 7 2,173 5,687 271
MOT20-08 35.1 77.1 30.8 36 67 9,550 39,617 1,145
MOT20-all 58.3 79.7 46.8 444 (35.7%) 231 (18.6%) 35,959 174,893 4,947

16


