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Abstract

Recent studies in computer vision have shown that,
while practically invisible to a human observer, skin color
changes due to blood flow can be captured on face videos
and, surprisingly, be used to estimate the heart rate (HR).
While considerable progress has been made in the last few
years, still many issues remain open. In particular, state-
of-the-art approaches are not robust enough to operate in
natural conditions (e.g. in case of spontaneous movements,
facial expressions, or illumination changes). Opposite to
previous approaches that estimate the HR by processing all
the skin pixels inside a fixed region of interest, we intro-
duce a strategy to dynamically select face regions useful for
robust HR estimation. Our approach, inspired by recent ad-
vances on matrix completion theory, allows us to predict
the HR while simultaneously discover the best regions of
the face to be used for estimation. Thorough experimental
evaluation conducted on public benchmarks suggests that
the proposed approach significantly outperforms state-of-
the-art HR estimation methods in naturalistic conditions.

1. Introduction

After being shown in [23, 18] that changes invisible to
the naked eye can be used to estimate the heart rate from
a video of human skin, this topic has attracted a lot of at-
tention in the computer vision community. These subtle
changes encompass both color [27] and motion [4] and they
are induced by the internal functioning of the heart. Since
faces appear frequently in videos and due to recent and sig-

Time

Figure 1. Motivation: Given a video sequence, automatic HR es-
timation from facial features is challenging due to target motion
and facial expressions. Facial features extracted over time in dif-
ferent parts of the face (purple rectangles) show different temporal
dynamics and are subject to noise, as they are heavily affected by
movements and illumination changes. In this paper, we propose a
novel approach to simultaneously estimate the HR signal and se-
lect the reliable face regions at each time for robust HR prediction.

nificant improvements in face tracking and alignment meth-
ods [3, 21, 13, 14, 29], facial-based remote heart rate esti-
mation has recently become very popular [17, 30, 10, 25].

Classical approaches successfully addressed this prob-
lem under laboratory-controlled conditions, i.e. imposing
constraints on the subject’s movements and requiring the
absence of facial expressions and mimics [18, 27, 4]. There-
fore, such methods may not be suitable for real world appli-
cations, such as monitoring drivers inside a vehicle or peo-
ple exercising. Long-time analysis constitutes a further lim-
itation of existing works [17, 18, 19]. Indeed, instead of es-
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timating the instantaneous heart rate, they provide the aver-
age HR measurement over a long video sequence. The main
disadvantage of using a long analysis window is the inabil-
ity to capture interesting short-time phenomena, such as a
sudden HR increase/decrease due to specific emotions [22].

In practice, another problem faced by researchers de-
veloping automatic HR measurement approaches, is the
lack of publicly available datasets recorded under realis-
tic conditions. A notable exception is the MAHNOB-HCI
dataset [20], a multimodal dataset for research on emotion
recognition and implicit tagging, which also contains HR
annotations. Importantly, an extensive evaluation of ex-
isting HR measurement methods on MAHNOB-HCI have
been performed by Li et al. [17]. However, the MAHNOB-
HCI dataset suffers from some limitations, since the record-
ing conditions are quite controlled: most of the video se-
quences do not contain spontaneous facial expressions, illu-
mination changes or large target movements [17].

In this work, we tackle the aforementioned problems
by introducing a novel approach for HR estimation from
face videos and providing an extensive evaluation on two
datasets: the MAHNOB-HCI, previously used for HR
recognition research [17], and a spontaneous dataset with
heart rate data and RGB videos (named MMSE-HR), which
is a subset of the larger multimodal spontaneous emotion
corpus (MMSE) [31] specifically targeted to challenge HR
estimation methods.

Inspired by previous methods, we track the face in
a given video sequence, so to follow rigid head move-
ments [17], and extract chrominance features [10] to com-
pensate for illumination variations. Importantly, most previ-
ous approaches preselect a face region of interest (ROI) that
is kept constant through the entire HR estimation. How-
ever, the region containing useful features for HR estima-
tion is a priori different for every frame since major appear-
ance changes are spatially and temporally localized (Fig.1).
Therefore, we propose a principled data-driven approach to
automatically detect the face parts useful for HR measure-
ment, that is to estimate the time-varying mask of useful ob-
servations, selecting at each frame the relevant face regions
from the chrominance features themselves.

Recent advances on matrix completion (MC) theory [11]
have shown the ability to recover missing entries of a ma-
trix that is partially observed, i.e. masked. Up to the authors
knowledge, we propose the first matrix completion-based
learning algorithm able to self-adapt, that is to automati-
cally select the useful observations, and call it self-adaptive
matrix completion (SAMC). Intuitively, while learning the
mask allows us to discard those face regions strongly af-
fected by facial expressions or large movements, complet-
ing the matrix smooths out the smaller noise associated to
the chrominance feature extraction procedure. The experi-
ments we conducted on the MANHOB-HCI dataset clearly

show that our method outperforms the state-of-the-art ap-
proaches for HR prediction. To further demonstrate the
ability of our method to operate in challenging scenar-
ios, we report a series of tests on the MMSE-HR dataset,
where subjects show significant movements and facial ex-
pressions.

Thus, the contribution of this paper is three-fold:

• We present a novel approach to address the problem of
HR estimation from face videos in realistic conditions.
To cope with large facial variations due to spontaneous
facial expressions and movements, we propose a prin-
cipled framework to automatically discard the face re-
gions corresponding to noisy features and only use the
reliable ones for HR prediction. The region selection
is addressed within a novel matrix completion-based
optimization framework, called self-adaptive matrix
completion, for which an efficient solver is proposed.

• Our approach is demonstrated to be more accurate than
previous methods for average HR estimation on pub-
licly available benchmarks. In addition, we report
short-term analysis results to show the ability of our
method to detect instantaneous heart rate.

• We perform extensive evaluation on the commonly
used MAHNOB-HCI dataset and a spontaneous
MMSE-HR dataset including 102 sequences of 40 sub-
jects, moving and performing spontaneous facial ex-
pressions. As we show, this dataset is valuable for in-
stantaneous HR estimation.

2. Related Work
In this section, we briefly review previous works on re-

mote heart rate measurement and on matrix completion.

2.1. HR Estimation from Face Videos

Cardiac activity measurement is an essential tool to con-
trol the subjects’ health and is actively used by medical
practitioners. Conventional contact methods offer high ac-
curacy of cardiac cycle. However, they require specific sen-
sors to be attached to the human skin, be it a set of elec-
trocardiogram (ECG) leads, a pulse oximiter, or the more
recent fitness tracker. To avoid the use of invasive sensors,
non-contact remote HR measurement from visual data has
been proposed recently by computer vision researchers.

Verkruysse et al. [23] showed that ambient light and a
consumer camera can be used to reveal the cardio-vascular
pulse wave and to remotely analyze the vital signs of a per-
son. Poh et al. [18] proposed to use blind source separation
on color changes caused by heart activity to extract the HR
signal from a face video. In [27] an Eulerian magnification
method is used to amplify subtle changes in a video stream



and to visualize temporal dynamics of the blood flow. Bal-
akrishnan et al. [4] showed that subtle head motions are af-
fected by cardiac activity, and these motions can be used to
extract HR measurements from a video stream.

However, all these methods failed to address the prob-
lems of HR estimation in presence of facial expressions
and subject’s movements, despite their frequent presence
in real-world applications. This limits the use of these ap-
proaches to laboratory settings. In [10, 25] a chrominance-
based method to relax motion constraints was introduced.
However, this approach was tested on a few not-publicly-
available sequences, making it hard to compare with.

Li et al. [17] proposed an approach based on adap-
tive filtering to handle illumination and motion issues and
they evaluated it on the publicly available MAHNOB-HCI
dataset [20]. However, although this work represents a
valuable step towards remote HR measurement from visual
data, it also shares several major limitations with the pre-
vious methods. The output of the method is the average
HR, whereas to capture short-term phenomena (e.g. HR
variations due to instantaneous emotions) the processing
of smaller time intervals is required. A further limitation
of [17] is the MAHNOB-HCI dataset itself, since it is col-
lected in a laboratory setting and the subjects are required
to wear an invasive EEG measuring device on their head.
Additionally, subjects perform neither large movements nor
many spontaneous facial expressions.

In this work, we address the aforementioned limitations
by proposing a novel method capable of predicting HR with
higher accuracy than the state-of-the-art approaches and of
robustly operating on short time sequences in order to detect
the instantaneous HR. To our knowledge, while previous
works [17, 25] have acknowledged the importance of select-
ing parts of the signal to cope with noise and provide robust
HR estimates, this paper is the first to tackle this problem
within a principled optimization framework.

2.2. Matrix completion

Matrix completion [11] approaches develop from the
idea that an unknown low-rank matrix can be recovered
from a small set of entries. This is done by solving an op-
timization problem, namely, a rank minimization problem
subject to some data constraints arising from the small set of
entries. Matrix completion has proved successful for many
computer vision tasks, when data and labels are noisy or in
the case of missing data, such as multi-label image classi-
fication [6], image retrieval and tagging [28, 9], manifold
correspondence finding [16], head/body pose estimation [1]
and emotion recognition from abstract paintings [2]. Most
of these works extended the original MC framework by im-
posing task-specific constraints. For instance, in [9] a MC
problem is formulated adding a specific regularizer to ad-
dress the ambiguous labeling problem. Very importantly,

even if most computer-vision papers based on matrix com-
pletion are addressing classification tasks, therefore split-
ting the matrix to be completed between features and labels,
MC techniques can be used in general, without any struc-
tural splitting. Indeed, in [15] matrix completion is adopted
to address the movie recommendation problem, where each
column (row) represents a user (movie), and therefore each
entry of the matrix shows the suitableness of a video for a
user. In [16, 15], the MC problem is extended to take into
account an underlying graph structure inducing a weighted
relationship between the columns/rows of the matrix. In this
paper, we were inspired by [16, 15, 1] in modeling the tem-
poral smoothness of the HR signal. However, our method
is essentially novel, since we are able to simultaneously re-
cover the unknown low-rank matrix and the underlying data
mask, corresponding to the most reliable observations.

3. HR Estimation using SAMC
In this section we describe the proposed approach for

HR estimation from face videos, that has four main phases
as shown in Figure 2. Phase 1 is devoted to process face
images so to extract face regions, that are used in phase 2
to compute chrominance features. Phase 3 consists in the
joint estimation of the underlying low-rank feature matrix
and the mask using SAMC. Finally, phase 4 computes the
heart rate from the signal estimate provided by SAMC.

3.1. Phases 1 & 2: From Face Videos to Chromi-
nance Features

Inspired by previous methods on remote HR estimation,
we use Intraface1 to localize and track 66 facial landmarks.
Many approaches have been employed for face frontalisa-
tion [24, 12]. However, in order to preserve the underlying
blood flow signal, in the current study we define the facial
region of interest (see Fig. 2-Phase 1), from which the HR
will be estimated. The potential ROI is then warped to a
rectangle using a piece-wise linear warping procedure, be-
fore dividing the potential ROI into a grid containing R re-
gions.

The overall performance of the HR estimation method
will strongly depend on the features extracted on each of
the R sub-regions of the facial ROI. Ideally, we would se-
lect features that are robust to facial movements and expres-
sions, while being discriminant enough to account for the
subtle changes in skin color. Currently, the best features
for HR estimation are the chrominance features, defined
in [10]. The chrominance features for HR estimation are
derived from the RGB channels, as follows. For each pixel
the chrominance signal C is computed as the linear com-
bination of two signals Xf and Yf , i.e. C = Xf − αYf ,
where α =

σ(Xf )
σ(Yf )

and σ(Xf ), σ(Yf ) denote the standard

1http://www.humansensing.cs.cmu.edu/intraface
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Figure 2. Overview of the proposed approach for HR estimation. During the first phase, we automatically detect a set of facial keypoints and
use them to define a ROI. This region is then warped to a rectangular area and divided into a grid. For each small sub-region, chrominance
features are computed (Phase 2). We then apply SAMC on the matrix of all feature observations to recover a smooth signal, while selecting
from which sub-regions the signal is recovered (Phase 3). Welch’s method [26] is used to estimate the power spectral density and thus the
HR frequency (Phase 4).

deviations of Xf , Yf . The signals Xf , Yf are band-passed
filtered signals obtained respectively from the signalsX and
Y , where X = 3Rn − 2Gn, Y = 1.5Rn + Gn − 1.5Bn
and Rn, Gn and Bn are the normalized values of the indi-
vidual color channels. The color combination coefficients
to derive X and Y are computed using a skin-tone stan-
dardization approach (see [10] for details). For each region
r = 1, . . . , R, the final chrominance features are computed
averaging the values of the chrominance signals over all the
pixels.

3.2. Phase 3: Self-Adaptive Matrix Completion

The estimation of HR from the chrominance features is
challenging for mainly two reasons. Firstly, the chromi-
nance features associated to different facial regions are not
fully synchronized. In other words, even if the output sig-
nals of many regions are synchronized between them (main-
stream underlying heart signal), the signal of many other re-
gions may not be in phase with the mainstream. Secondly,
face movements and facial expressions induce strong per-
turbations in the chrominance features. These perturbations
are typically local in space and time while large in intensity
(Fig.1). Therefore, we need to localize where these pertur-
bations take place so not to use them in the HR estimation.

These two main difficulties are intuitively overcome by
deriving a matrix completion technique embedding a self-
adaptation strategy. On the one hand, since matrix com-
pletion problems are usually approached by reducing the
matrix rank, the low-rank estimated matrix naturally groups
the rows by their linear dependency. In our particular case,

two rows are (near) linearly dependent if and only if the
output signals they represent are synchronized. Therefore,
the underlying HR signal is hypothesized to be in the vector
subspace spanned by the largest group of linearly dependent
rows of the estimated low-rank matrix.

On the other hand, the estimated low-rank matrix is en-
forced to resemble the observations. In previous MC ap-
proaches [6, 9, 1, 16], the non-observed part of the ma-
trix consisted of the labels of the test set. Thus, the set of
unknown matrix entries was fixed and known in advance.
The HR estimation problem is slightly different since there
are no missing observations, i.e. the matrix is fully ob-
served. However, many of these observations are highly
noisy, thus corrupting the estimation of the HR. Importantly,
we do not know in advance which are the corrupted obser-
vations. This is why we believe that this problem naturally
requires some form of adaptation, implying that the method
selects the samples with which the learning is performed.
Consequently, we name the proposed learning method self-
adaptive matrix completion (SAMC).

In order to formalize the self-adaptive matrix comple-
tion problem let us assume the existence of R regions
where chrominance features are computed during T video
frames. This provides a chrominance observations matrix
C ∈ RR×T . Ideally, in a scenario where we could trust all
region features continuously, we would simply estimate the
low-rank matrix that better approximates the matrix of ob-
servations C, by solving: minE ν rank(E) + ‖E − C‖2F ,
where ν is a regularization parameter. Unfortunately, min-
imizing the rank is a NP-hard problem, and traditionally a



convex surrogate of the rank, the nuclear norm, is used [8]:

min
E

ν‖E‖∗ + ‖E−C‖2F . (1)

Another intrinsic property of the chrominance features
is that, since the underlying reason of their oscillation is
the internal functioning of the heart, we should enforce the
estimated chrominance features (those of the low-rank esti-
mated matrix) to be within the heart-rate’s frequency range.
Inspired by [15, 16, 1] we add a temporal smoothing term
by means of a Laplacian matrix L:

min
E

ν‖E‖∗ + ‖E−C‖2F + γ Tr(ELE>), (2)

where γ measures the weight of the temporal smoothing
within the learning process. L should encode the relational
information between the observations acquired at different
instants, thus acting like a relaxed band-pass filter. Indeed,
imposing that er is band-pass filtered is equivalent to reduce
‖er − erT‖2 = ‖erT̃‖2, where each column of T is a
shifted replica of the band-pass normalized filter tap values
so that the product erT boils down to a convolution and T̃
is a copy of T with zeros in the diagonal, since the band-
pass filter is normalized. Imposing this for all R regions at
once writes: Tr(ET̃T̃>E>), and therefore L = T̃T̃>.

As previously discussed, the estimated matrix should not
take into account the observed entries associated to large
movements or spontaneous facial expressions. We model
this by including a masking binary matrix M ∈ {0, 1}R×T
in the previous equation as [6]:

min
E

ν‖E‖∗ + ‖M ◦ (E−C)‖2F + γ Tr(ELE>), (3)

where ◦ stands for the element-wise (Hadamard) product
and the entries of the matrix M are 1 if the corresponding
entry in C has to be taken into account for the HR estima-
tion and 0 otherwise.

Importantly, while in the previous studies M was known
in advance, in the present study we have to estimate it. We
naturally interpret this as a form of adaptation since M is a
observation-selection variable indicating from which obser-
vations should the method learn at each iteration. The mask-
ing matrix M should select the largest possible amount of
samples that provide useful information for the estimation
of the HR. Moreover, when available, it would be desirable
to use a prior for the mask M, taking real values between 0

and 1, M̃ ∈ [0, 1]R×T . The complete SAMC optimization
problem writes:

min
E,M

ν‖E‖∗ + ‖M ◦ (E−C)‖2F + γ Tr(ELE>)

− β‖M‖1 + µ‖M− M̃‖2F , (4)

The parameters β and µ regulate respectively the number
of selected observations and the importance of prior infor-
mation. In this paper the prior mask M̃ is defined as the

negative exponential of the local standard deviation of the
signal. Our intuition is that, if the signal has small local
standard deviation, the chrominance variation within the re-
gion is due to the heart-rate and not to head movements or
facial expressions, and therefore that matrix entry should be
used to estimate the HR.

3.2.1 Solving SAMC

The SAMC optimization problem in (4) is not jointly con-
vex in E and M. Moreover, even in the case the mask-
ing matrix M was fixed, (4) would contain non-differential
and differential terms and a direct optimization would be
challenging. Instead, alternating methods have proven to
be successful in solving (i) convex problems with non-
differential terms and (ii) marginally convex problems that
are not jointly convex. More precisely, we derive an opti-
misation solver based on the alternating direction method of
multipliers (ADMM) [5]. In order to derive the associated
ADMM method, we first define the augmented Lagrangian
problem associated to (4):

min
E,F,M,Z

ν‖E‖∗+‖M◦(F−C)‖2F+γ Tr(FLF>)−β‖M‖1

+ µ‖M− M̃‖2F + 〈Z,E− F〉+ ρ

2
‖E− F‖2F , (5)

where F is defined to split the terms of (4) that depend on
E into those that are differential and those that are not. The
variable Z represents the Lagrange multipliers constrain-
ing E to be equal to F, further regularized by the term
‖E−F‖2F . The ADMM solves the optimisation problem by
alternating the direction of the optimisation while keeping
the other directions fixed. Specifically, solving (5) requires
alternating the following three steps until convergence:

E/M-step With fixed F and Z the optimal value of E is
obtained by solving:

min
E

ν‖E‖∗ +
ρ

2
‖E− F+ ρ−1Z‖2F . (6)

The solution of such problem is given by the shrinkage op-
erator applied to F − ρ−1Z, see [7]. Formally, if we write
the singular value decomposition of F− ρ−1Z = UDV>,
the optimal value for E is:

E∗ = US ν
ρ
(D)V>, (7)

where Sλ(x) = max(0, x − λ) is the soft-thresholding op-
erator, applied element-wise to D in (7).

The optimal value for M is obtained from the following
optimisation problem:

min
M
‖M ◦ (F−C)‖2F − β‖M‖1 + µ‖M− M̃‖2F , (8)



which can be rewritten independently for each entry of M:

min
mrt∈{0,1}

(frt − ort)2mrt + µ(mrt − m̃rt)
2 − βmrt. (9)

The solution is straightforward:

m∗rt =

{
1 (frt − ort)2 + µ(1− 2m̃rt) < β,
0 otherwise. (10)

Intuitively, this means that a chrominance feature is selected
for learning if (i) the entry of the smoothed low-rank esti-
mation F is close to the corresponding entry in C and (ii)
that chrominance feature should be selected a priori. Re-
markably, this criterion is a mixture of the a posteriori rep-
resentation power and the a priori knowledge.

F-step With fixed E, Z and M, the optimal value of F is
obtained by solving the following optimisation problem:

min
F
‖M◦(F−C)‖2F+γ Tr(FLF>)+

ρ

2
‖F−E−ρ−1Z‖2F .

(11)
Eq. 11 is a particular case of the problem solved in [15, 16].
Importantly, in our case there is no need to solve a linear
system of dimension RT as in [15, 16], but we require to
solveR linear systems of dimension T as in [1]. From a nu-
merical point of view this is quite advantageous, since larger
linear systems tend to be numerically more unstable. More
precisely, (11) can be rewritten independently for each of
the R rows of F:

min
fr
‖Mr(fr − or)‖2 + γfrLf

>
r +

ρ

2
‖fr − er − ρ−1zr‖2,

(12)
where lower-case bold letters denote rows of the respective
matrices and Mr = diag(mr). The solution of the previous
system is straightforward:

f∗r = (2Mr + 2γL+ ρIT )
−1(2Mror + ρer + zs), (13)

where IT is the T -dimensional identity matrix.

Z-step The optimal value of Z is taken from [5]:

Z∗ = Z+ ρ(E− F), (14)

where the right-hand side represent the current values.

3.3. Phase 4: HR Estimation

Once the SAMC solver converges to an optimal solution
for E, we can simply hypothesize that, since the main un-
derlying signal is the one associated to the heart rate, the
largest singular value of E, would encode the information
associated to the sought signal. Therefore, we write the sin-
gular value decomposition of E = UDV>, it is reasonable
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Figure 3. Two examples of video sequences from the MMSE-HR
dataset where the subjects experience fear. For each subject two
rows are shown. Top: the recorded RGB-video frames. Bot-
tom: physiological data. Note how the heart rate (the blue line)
increases when each subject experiences fear.

to take the first column of V, V1 as the estimated underly-
ing HR signal. Finally, the Welch’s power spectral density
estimation method [26] is employed to obtain the frequency
in V1 with the largest energy fHR. For the instantaneous
HR measurement to get fHR we follow [10] and simply de-
tect the highest peak in the Fourier domain of the estimated
signal. The HR measured from the input video is then com-
puted as H = 60fHR.

4. Experimental Evaluation
4.1. Datasets

We conducted experiments on two datasets: the publicly
available MAHNOB-HCI dataset [20] and the MMSE-HR
dataset. As demonstrated by our experimental results, the
latter dataset contains more challenging sequences, due to
subjects’ movements and facial expressions.
The MAHNOB-HCI dataset is a multimodal dataset with
20 high resolution videos per subject. It contains 27 sub-
jects (12 males and 15 females) in total, and each subject
participated in two experiments: (i) emotion elicitation and
(ii) implicit tagging. Following [17], in our experiments
we used a 30 second interval (frames from 306 through
2135) of 527 sequences. To compute the ground truth heart
rate for each video sequence we used the second channel
(EXG2) of the corresponding ECG waveforms (see [20]).
The MMSE-HR dataset2 is a subset of the MMSE
database [31] specifically targeted to challenge heart rate es-
timation algorithms. The MMSE-HR dataset includes 102

2The MMSE-HR is included in the full dataset (MMSE) [31] which
will be made available to the research community through the Binghamton
University



RGB videos and heart-rate data of 40 participants with di-
verse ethnic/racial ancestries. Two examples are given in
Fig. 3 (Note how the HR changes during the recording when
each person experiences fear. This supports the value of the
dataset for research on instantaneous HR estimation). The
physiological data were collected by Biopac Mp150 data
acquisition system3, including heart-rate, mean blood pres-
sure, and other physiological signals, working at 1 kHz. All
sensors were synchronized. More details regarding data col-
lection and recording setup can be found in [31].

To compute the ground truth HR signal for both datasets
we used a peak detection method from the MNE package4.

4.2. Settings

To evaluate the performance of the proposed approach
and compare it with previous methods, we consider five
commonly used metrics in the literature on remote HR anal-
ysis [17]. Specifically, we define He(i) = Hp(i)−Hgt(i),
i.e. the difference between the predicted heart rate Hp(i)
and the ground truth heart rate Hgt(i) for the i-th video
sequence. We report the mean Me and the standard devi-
ation SDe of He over all sequences. We also adopt the
Root Mean Squared Error (RMSE), the mean of error-rate
percentage MeRate =

∑N
i=1

|He(i)|
Hgt(i)

and the Pearson’s cor-
relation ρ between signals Hp = {Hp(1), ...,Hp(N)} and
Hgt = {Hgt(1), ...,Hgt(N)}, being N is the number of
video sequences. In all our experiments the parameters of
the proposed method have been selected by cross-validation
on a subset of MMSE-HR and set to ν = 0.0357, γ = 0.01,
µ = 0.0011 and β = 0.0005. Importantly, these parame-
ters were used throughout all our experiments for the two
datasets, supporting the generalization ability of SAMC.

4.3. Results

Average HR prediction. In the first series of experiments
we compare the proposed approach with several state-of-the
art methods for average HR prediction on the MAHNOB-
HCI dataset. Specifically we consider the approaches de-
scribed in [18, 19, 4, 17, 10]. Performance on MAHNOB-
HCI is given in Table 1. To perform a quantitative compari-
son, we have implemented the methods in [17] and [10]5,
since their code is not available, while the performance
measures for [18, 19, 4] are taken from [17]. It is evident
that, while HR estimation on MAHNOB-HCI represents
a challenging task for early methods, the more recent ap-
proaches, [17] and [10], achieve high accuracy. Moreover,
our approach outperforms competing methods by a small

3http://www.biopac.com/
4http://martinos.org/mne/stable/index.html
5We also reimplemented the more recent method based on chrominance

features in [25]. Unfortunately, perhaps due to the fact that the method is
exhaustively described, we obtained worse results than those we obtained
with [10]. Therefore we choose to report our results using [10].

Table 1. Average HR prediction: comparison among different
methods on MAHNOB-HCI dataset (best performance in bold).

Method Me(SDe) RMSE MeRate ρ

Poh et al. [18] -8.95 (24.3) 25.9 25.0% 0.08
Poh et al. [19] 2.04 (13.5) 13.6 13.2% 0.36
Balakrishnan et al. [4] -14.4(15.2) 21.0 20.7% 0.11
Li et al. [17] -3.30 (6.88) 7.62 6.87% 0.81
De Haan et al. [10] 4.62 (6.50) 6.52 6.39% 0.82

SAMC 3.19 (5.81) 6.23 5.93% 0.83

Table 2. Average HR prediction: comparison among different
methods on MMSE-HR (best performance in bold).

Method Me(SDe) RMSE MeRate ρ

Li et al. [17] 11.56 (20.02) 19.95 14.64% 0.38
De Haan et al. [10] 9.41 (14.08) 13.97 12.22% 0.55

SAMC 7.61 (12.24) 11.37 10.84% 0.71

Table 3. Self-adapting (SA) vs. non-adapting (NA) MC.

p Me(SDe) RMSE MeRate ρ

SA 20 8.13 (12.08) 12.13 10.74 0.68
40-100 8.22 (12.24) 12.23 10.84 0.67

NA

20 55.39 (36.86) 65.99 68.21 0.08
40 35.90 (41.29) 51.47 44.76 0.16
60 22.40 (33.79) 37.06 27.91 0.17
80 9.41 (14.53) 14.63 11.91 0.49
100 10.05 (15.23) 15.13 12.98 0.47

margin. This can be explained by the fact that MAHNOB-
HCI does not contain many sequences with subject’s move-
ments and facial expression changes, while SAMC has been
designed to explicitly cope with the spatially localized and
intense noise they generate.

To demonstrate the advantages of our method, we per-
form similar experiments on the more challenging se-
quences of the MMSE-HR dataset. Here, we only com-
pare our method against the best-performing methods from
Table 1. Table 2 reports the results of our evaluation. On
this difficult dataset, due to its capacity to select the most
reliable chrominance features and ignore the noisy ones,
the proposed SAMC achieves significantly higher accuracy
than the state-of-the-art.
Effect of self-adaptation. In order to show the benefits
of adopting the proposed self-adaptation strategy, we pro-
vide results with a fixed binary mask M (i.e. without self-
adaptation) and compare them to those obtained with self-
adaptation in Table 3. The first column corresponds to the
percentile of the values of the prior M̃ used to construct the
initial mask. More precisely, for a value p, the initial mask
is 1 only in the entries corresponding to the p% regions with
the lowest standard deviation. Therefore, p = 100% cor-
responds to an (initial) mask matrix of all 1’s. Clearly, the
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Figure 4. Left: performance at varying values of the γ and µ.
Right: RMSE dependency on σs.

choice of p is crucial when the matrix is fixed, but almost ir-
relevant when there is self-adaptation. Also, self-adaptation
systematically outperforms the fixed mask case.

Finally, Fig. 4 (left) shows the performance of the pro-
posed approach at different values of parameters µ and γ for
the experiments on the MMSE-HR dataset. As shown in the
figure, very small and very large values of µ (indicating an
increase and a reduction of the influence of the prior mask),
correspond to a decrease of performance. Similarly, for the
parameter γ, weighting the influence of the Laplacian term,
a local optimum can be obtained for γ = 0.01. Fig. 4 (right)
shows similar behavior for σ, used to compute the prior
mask as the negative entry-wise exponential of the matrix
of standard deviations normalized by σ: M̃ = e(−S/σ).
Short-time HR estimation. To demonstrate the ability
of our method to recognize instantaneous HR, we selected
20% of the recorded sequences where there is a very strong
heart-rate variation. We split each sequence into non-
overlapping windows of length 4, 6, and 8 seconds and
process each window independently with [10] and SAMC,
since the approach in [17] is not suitable for instantaneous
HR prediction. Table 4 shows the results of our short-time
window analysis. The table supports the intuition that, the
smaller the window, the more difficult is for a method to
reliably estimate the HR. Importantly, SAMC consistently
outperforms [10] for all window lengths and produces reli-
able estimates starting from the 4-second windows.

To show that our method is able to follow the changes
in subject’s HR, we additionally report the predicted heart
rate for three sequences of different length. Figure 5 shows
the results of three selected video sequences processed by
our method. Note that although the method is not able to
predict the exact HR for every window, providing the value
close to the ground truth, a sudden increase/decrease is well
localized in time.
Running time. The proposed approach is fast, enabling
real-time HR analysis. On average, phase 1 runs at 50 fps,
while phase 2 runs at around 30 fps. Phase 3 and 4 have the
smallest execution time, reaching 550 fps. Running times
were measured using a single core implementation on a con-
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Figure 5. Heart rate recognition results for three sequences, using
window size of 4 seconds. Y -axis shows the interval over which
the heart rate was computed.

Table 4. Short-time window analysis. Results for three windows
sizes are reported: 4, 6, and 8 seconds.

Method Me(SDe) RMSE MeRate ρ

4 s De Haan et al. [10] -1.85 (15.77) 15.83 9.92% 0.67
SAMC 2.12 (11.51) 11.66 9.15% 0.78

6 s De Haan et al. [10] -2.21 (19.21) 19.27 11.81% 0.33
SAMC 0.32 (8.29) 8.27 7.30% 0.80

8 s De Haan et al. [10] 0.81 (11.49) 11.46 8.60% 0.63
SAMC 1.62 (9.67) 9.76 7.52% 0.71

ventional laptop with an Intel Core i7-4702HQ processor.

5. Conclusions
We presented a novel framework for remote HR estima-

tion from visual data. At the core of our approach, there is
a novel optimization framework, named self-adaptive ma-
trix completion, which outputs the HR measurement while
simultaneously selecting the most reliable face regions for
robust HR estimation. This strategy permits to discard noisy
features, due to spontaneous target’s movements and facial
expressions. As demonstrated by our experimental evalua-
tion, the proposed approach provides accurate HR estimates
and outperforms state-of-the-art methods not only in the
case of long-time windows, but also for short-time analysis.
Extensive experiments conducted on the MMSE-HR dataset
support the value of the adopted self-adaption strategy for
HR estimation. Future work guidelines include devising
novel feature representations, in alternative to chrominance
signals, to further improve the robustness to varying illu-
mination conditions as well as exploiting the feasibility of
combining the predicted HR measurements with visual fea-
tures for spontaneous emotion classification.
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