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2Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain
1{wen.guo,xiaoyu.bie,xavier.alameda-pineda}@inria.fr, 2fmoreno@iri.upc.edu

Figure 1. Collaborative human motion prediction. 1st row: 3D sample meshes from our ExPI Dataset (just for visualization purposes).
2nd-4th rows: Motion prediction results by MSR [19], Hisrep [47], and our method. Dark red/blue indicate prediction results, and
light red/blue are the ground truth. By exploiting the interaction information, our approach of collaborative motion prediction achieves
significantly better results than methods that independently predict the motion of each person.

Abstract
Human motion prediction aims to forecast future poses

given a sequence of past 3D skeletons. While this prob-
lem has recently received increasing attention, it has mostly
been tackled for single humans in isolation. In this paper,
we explore this problem when dealing with humans per-
forming collaborative tasks, we seek to predict the future
motion of two interacted persons given two sequences of
their past skeletons. We propose a novel cross interaction
attention mechanism that exploits historical information of
both persons, and learns to predict cross dependencies be-
tween the two pose sequences. Since no dataset to train
such interactive situations is available, we collected ExPI
(Extreme Pose Interaction), a new lab-based person inter-
action dataset of professional dancers performing Lindy-
hop dancing actions, which contains 115 sequences with
30K frames annotated with 3D body poses and shapes.
We thoroughly evaluate our cross interaction network on
ExPI and show that both in short- and long-term predic-
tions, it consistently outperforms state-of-the-art methods

*Equal contribution.

for single-person motion prediction.

1. Introduction

The goal of human motion prediction is to predict future
motions from previous observations. With the successful
development of deep human pose estimation from single
image [9, 18, 27, 37, 51, 52, 55, 56, 58, 59, 68], motion pre-
diction begins to draw an increasing attention [3, 8, 16, 22,
23,26,29,33,38,43,47,49,50,60]. Most existing works for-
mulate motion prediction as a sequence-to-sequence task,
where past observations of 3D skeleton data are used to
forecast future skeleton movements. A common denomi-
nator of all these approaches is that they treat each pose
sequence as an independent and isolated entity: the motion
predicted for one person relies solely on her/his past motion.
However, in real world scenarios people interact with each
other, and the motion of one person is typically dependent
on or correlated with the motion of other people. Thus, we
could potentially improve the performance of motion pre-
diction by exploiting such human interaction.

Based on this intuition, in this paper we present a novel
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task: collaborative motion prediction, which aims to jointly
predict the motion of two persons strongly involved in an
interaction. To the best of our knowledge, previous pub-
licly available datasets for 3D human motion prediction like
3DPW [68] and CMU-Mocap [25] that involve multiple
persons only include weak human interactions, e.g., talk-
ing, shaking hands etc. Here we move a step further and
analyse situations where the motion of one person is highly
correlated to the other person, which is often seen in team
sports or collaborative assembly tasks in factories.

With the goal to foster research on this new task, we col-
lected the ExPI (Extreme Pose Interaction) dataset, a large
dataset of professional dancers performing Lindy Hop aerial
steps.1 To perform these actions, the two dancers perform
different movements that require a high level of synchroni-
sation. These actions are composed of extreme poses and
require strict and close cooperation between the two per-
sons, which is highly suitable for the study of human inter-
actions. Some examples of this highly interacted dataset are
shown in Figure 2. Our dataset contains 115 sequences of
2 professional couples performing 16 different actions. It is
recorded in a multiview motion capture studio, and the 3D
poses and 3D shapes of the two persons are annotated for all
the 30K frames. We have carefully created train/test splits,
and proposed two different extensions of the pose evalua-
tion metrics for collaborative motion prediction task. We
plan to release this dataset to the community. 2

To model such strong human-to-human interactions, we
introduce a novel Cross-Interaction Attention (XIA) mod-
ule, which is based upon a standard multi-head atten-
tion [64] and exploits historical motion data of the two
persons simultaneously. For a pair of persons engaging in
the same activity, XIA module extracts the spatial-temporal
motion information from both persons and uses them to
guide the prediction of each other.

We exhaustively evaluate our approach and compare it
with state-of-the-art methods designed for single human
motion prediction. Note that in our dataset of dancing ac-
tions, movements are performed at high speed. The long
term predictions are very challenging in this case. Never-
theless, the results demonstrate that our approach consis-
tently outperforms these methods by a large margin, with
10 ∼ 40% accuracy improvement for short (≤ 500 ms) and
5 ∼ 30% accuracy improvement for long term prediction
(500 ms ∼ 1000 ms).

Our key contributions can be summarized as follows:

• We introduce the task of collaborative motion predic-
tion, to focus on the estimation of future poses of peo-
ple in highly interactive setups.

1The Lindy Hop is an African-American couple dance born in the
1930’s in Harlem, New York, see [54].

2The dataset will be released to the community to foster research in this
direction after final ethics approval.

• We collect and will make publicly available ExPI,
a large dataset of highly interacted extreme dancing
poses, annotated with 3D joint locations and body
shapes. We also define the benchmark with carefully
selected train/test splits and evaluation protocols.

• We propose a method with a novel cross-interaction
attention (XIA) module that exploits historical motion
of two interacted persons to predict their future move-
ments. Our model can be used as a baseline method
for collaborative motion prediction.

2. Related Work
2.1. 3D Human Motion Prediction

Due to the inherent sequential structure of human mo-
tion, 3D human motion prediction has been mostly ad-
dressed with recurrent models. For instance, Fragkiadaki et
al. [22] propose an encoder-decoder framework to embed
human poses and an LSTM to update the latent space and
predict future motion. Jain et al. [33] split human body
into sub-parts and forward them via structural RNNs. Mar-
tinez et al. [50] introduce a residual connection to model
the velocities instead of the poses themselves. Interestingly,
they also show that a model trained with diverse action data
performs better than those trained with single actions. How-
ever, although RNNs achieve great success in motion pre-
diction, they suffer from containing the entire history with
a fixed-size hidden state and tend to converge to a static
pose. Some works alleviate this problem by using RNN
variants [15, 45], sliding windows [10, 11], convolutional
models [29, 30, 39] or adversarial training [26].

Since human body is a non-rigid and structured data,
directly encoding the whole body into a compact latent
embedding will neglect the spatial connectivity of human
joints. To this end, Mao et al. [49] introduces a feed forward
graph convolutional network (GCN) [35,65] with learnable
adjacent matrix. This approach was later boosted with self-
attention on an entire piece of historical information [47]
or a selection of them [41]. Recently, GCN based meth-
ods are further developed by leveraging multi-scale supervi-
sion [19], space-time-separable graph [63], and contextual
information [1, 2]. In terms of GCN design, Cui et al. [17]
argue that training the adjacent matrix from scratch ignores
the natural connections of human joints, and propose to use
a semi-constrained adjacent matrix. Li et al. [42] combine a
graph scattering network with a hand-crafted adjacent ma-
trix. Other works also exploit the use of transformers [64]
to replace GCN in human motion prediction [3, 12].

Considering that human actions are essentially stochas-
tic in the future, some works leverage on generative models
(e.g. VAEs and GANs) [5, 6, 13, 48, 57, 71, 72, 74]. Never-
theless, although these models can generate diverse future
motions, their prediction accuracy still needs to be further
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Figure 2. Some samples of the ExPI dataset: RGB image with projected 2D skeletons, 3D pose, mesh and textured mesh.

improved when compared to deterministic models.

2.2. Contextual Information in Human Interaction

Humans never live in isolation, but perform continu-
ous interactions with other people and objects. Modeling
such interactions and the contextual information has been
proven to be effective in the topic of 3D human pose es-
timation [27, 28, 34, 69, 70, 73]. Contextual information
has also been shown to be beneficial in predicting human
path trajectories. For this purpose, recent works explore
the use of multi-agent context with social pooling mech-
anisms [4], tree-based role alignment [20], soft attention
mechanisms [66] and graph attention networks [31, 36, 40].

Unlike the trajectory forecasting problem that focuses on
a single center point, motion prediction aims at predicting
the dynamics of the whole human skeleton. Incorporating
contextual information in such a situation is still much un-
explored. Corona et al. [16] expand the use of contextual
information into motion prediction with a semantic-graph
model, but only weak human-to-human or human-to-object
correlations are modeled. Cao et al. [14] involve scene
context information into the motion prediction framework,
but without human-to-human interaction. More recently,
Adeli et al. [1,2] develop a social context aware motion pre-
diction framework, where interactions between humans and
objects are modeled either with a social pooling [1] or with
a graph attention network [2]. However, they only study in
2D space [7] or with weak human interactions [68]. Since
in this dataset [68], most of the actions involve weak in-
teractions like shaking hands or walking together. In any
event, none of these papers explores the situation we con-
template in this paper, in which humans do perform highly
interactive actions.

2.3. Datasets

Using deep learning methods to study 3D human pose
tasks relies on high-quality datasets. Most previous 3D
human datasets are single person [32, 46, 62] or made of
pseudo 3D poses [53, 68]. Other datasets which contain
label-based 3D data usually do not have close interac-
tions [25,44,53,61]. Recently, some works start to focus on
the importance of context information and propose datasets

to model interaction of synthetic persons with scenes [14].
Finally, Fieraru et al. [21] created a dataset of human in-
teraction with a contact-detection-aware framework. How-
ever, this dataset just contains several daily interaction sce-
narios with mild human interactions, and it is not released
yet. We believe the Extreme Pose Interaction Dataset we
present here, where people motion is highly correlated,
fills an empty space in the current datasets of human 3D
pose/motion.

3. Problem Formulation

As discussed in the introduction, the task of single per-
son human motion prediction, while fairly recent in the lit-
erature, is well established. It is defined as learning a map-
pingM : PtI:t−1 −→ Pt:tE

to estimate the future movements
Pt:tE

from the previous observation PtI:t−1, where tI and tE

denote the initial sequence frame and the ending sequence
frame respectively, and Pt denotes the pose of the person at
time t.

In this work, we extend the problem formulation to
collaborative motion prediction of two interacted persons.
While our formulation is general and could work for any
kind of interactions, for the sake of consistency throughout
the paper, we will denote by ` and f variables correspond-
ing to the leader and the follower respectively (see Section 4
on the dataset description). Therefore, the collaborative mo-
tion prediction task is defined as learning a mapping:

MC : P `tI:t−1, P
f
tI:t−1 −→ P `t:tE

, P ft:tE
. (1)

Since the two persons are involved in the same interac-
tion, we believe it is possible to better predict the motion
of a person by exploit the pose information of her/his inter-
acted partner. From now on, we will use P ct = [P lt , P

f
t ] to

denote the joint pose of the couple (two actors) at time t,
and Pt to denote either of them.

In the following parts of the paper, we will provide an
experimental framework for the collaborative motion pre-
diction task, consisting of a dataset and evaluation metrics,
to foster research in this direction. And we will also intro-
duce our proposed method for this task.
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Figure 3. Extremeness. Left: percentage of joints whose std is among a certain threshold (in different colors), for different actions. Actions
with more red colors are more extreme. Right: percentage of joints whose std is beyond a certain threshold.

4. The Extreme Pose Interaction Dataset
We present the Extreme Pose Interaction (ExPI) Dataset,

a new person interaction dataset of Lindy Hop dancing ac-
tions. In Lindy Hop, the two dancers have different roles,
referred to as leader and follower.3 We recorded 2 couples
of dancers, one at a time, in a multi-camera setup, equipped
also with a motion-capture system. In this section we firstly
describe the recording procedure, then give a comprehen-
sive analysis of our dataset.

4.1. Dataset Overview

Dataset Structure. In the ExPI dataset 16 different ac-
tions are performed, some by the 2 couple of dancers, some
by only one of the couples. Each action was repeated five
times to account for variability. Overall, ExPI contains 115
sequences, each one depicting an execution of one of the
actions. More precisely, for each recorded sequence, ExPI
provides: (i) Multi-view image sequences at 25FPS from all
the cameras in the recording setup; (ii) Mocap data (3D po-
sition of 18 joints for each person) at 25FPS synchronised
with image sequences.; (iii) camera calibration information;
and (iv) 3D shapes as textured meshes for each frame. Over-
all, the dataset contains almost 30k visual frames for each
view point and 60k 3D instances annotated.

Dataset Collection and Post-processing. The data were
collected in a multi-camera platform equipped with 68 syn-
chronised and calibrated color cameras and a motion cap-
ture system with 20 mocap cameras.4 When collecting the
motion capture data, some points are missed by the system
due to occlusions or tracking losses, which is a common
phenomena in lab-based interacted Mocap datasets [21]. To
overcome this issue and ensure the quality of the data, we
spent months to manually label the missing points.
More details about the data structure and data post-
processing are provided in the supplementary material.

4.2. Data Analysis

Diversity. Similar to Ionescu et al. [32], we analyse the di-
versity of our dataset by checking how many distinct poses

3This is the standard gender-neutral terminology for Lindy-Hop.
4Kinovis https://kinovis.inria.fr/

have been obtained. We consider two poses to be distinct,
if at least one of the J joints for one pose P cm is different
from the corresponding joint of the other pose P cn, beyond
a certain tolerance τ (mm):

max
j∈[1,J]

‖P cm,j − P cn,j‖ > τ, (2)

where m,n ∈ D denote any two poses in the dataset D.
Then we define diversity of the dataset as the percentage of
distinct poses among all the poses. According to Ionescu et
al. [32], the diversity of H3.6M5 is 24% and 12% when set-
ting the tolerance τ to 50 mm and 100 mm, respectively.
The diversity of ExPI for the same threshold values is 52%
and 23%, which is much diverse.
Extremeness. To measure the extremeness of a pose se-
quence, we first compute the standard deviation (std) over
time for each of the three coordinates of every joint . Then,
the extremeness of the joint j is defined as its maximum
per-coordinate standard deviation: εj = max{σxj , σ

y
j , σ

z
j }.

Finally, the extremeness of an action is evaluated by com-
puting the percentage of joint extremeness values εn within
various intervals [εmin, εmax]. Figure 3 reports the extreme-
ness of ExPI dataset compared to H3.6M in two different
ways: (i) a per-action plot reporting extremeness on various
color-coded intervals (left); (ii) computing the percentage
of joints more extreme than a certain std value(right). From
both plots it is clear than the ExPI dataset is significantly
more extreme than the H3.6M dataset.

5. Method
We introduce our approach for collaborative motion pre-

diction, aiming to set the first performance baseline to help
future developments.

5.1. Pipeline

The idea of our method is to learn two person-specific
motion prediction mappings, and to propose a strategy to
share information between these two mappings. The possi-
bility to include information from the other person involved
in the interaction, should push the network to learn a better

5Licence for H3.6M dataset http : / / vision . imar . ro /
human3.6m/eula.php
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Figure 4. Left: Computing flow of the proposed method. Two parallel pipelines – for the leader and the follower – are implemented.
The key-value pairs are refined by XIA modules (we just visualize XIA modules for the first sub-sequences, while it is the same for the
following sub-sequences). Right: Cross-interaction attention (XIA) module. In order to refine w with the help of the corresponding
interaction information wint., the multi-head attention is queried by wint. and take w as key and value.

representation for motion prediction. The overall pipeline
is described in Figure 4-left.

For the two single person motion prediction mappings,
we draw inspiration from [47], using an attention model for
leaning temporal attention w.r.t. the past motions, and a pre-
dictor based on Graph Convolutional Network (GCN) [35]
to model the spatial attention among joints using an adja-
cency matrix. The temporal attention model aims to find
the most relative sub-sequence in the past by measuring the
similarity between the last observed sub-sequence and a set
of past sub-sequences. In this attention model, the query
Q is learnt by MLP from the last observation Pt−1−M :t−1
(blue dashed rectangle in Figure 4-left, length M ). The
keys Ki are learnt by MLP from the starting chunk of
sub-sequences Pti:ti+M (red dashed rectangles in Figure 4-
left, length M ). And the values Vi consist of DCT repre-
sentations built from the sub-sequences Pti:ti+M+T (black
dashed rectangles in Figure 4-left, length M + T ), where ti
with i ∈ {1, . . . , N} indicates the start frame of each past
sub-sequence.

Training such strategy separately for each actor does not
account for any interaction between the two dancing part-
ners. To deal with this, we design a cross-interaction at-
tention (XIA) module based on multi-head attention, to in-
troduce guidance form the interacted person. In the next
section we introduce this XIA module.

5.2. Cross-Interaction Attention (XIA)

XIA aims to share motion information between the two
predictors. In particular, we denote the query and the key-
value pairs for one person by Q and {Ki, Vi}Ni=1 respec-
tively, and use the superscript f and ` to indicate the two
person, follower and leader. We naturally cast the collab-

orative human motion prediction task into learning how to
jointly exploit the information in (Ki, Vi) when querying
with Q to predict motion of each person.

Our intuition is that the pose information (key-value
pairs) of one person can be used to transform the pose in-
formation of the other person for better motion prediction.
We implement this intuition with the help of the proposed
cross-interaction attention module. Such a module takes as
input w and the corresponding vector from the interacted
pose wint., and uses multi-head self attention to get the re-
fined vector w̃ (see Figure 4-right):

w̃ = XIA(wint., w) = FC(MHA(wint., w, w) + w), (3)

where MHA(q, k, v) stands for multi-head attention with
query q, key k and value v, and FC indicates fully con-
nected layers. We use different XIA modules to update
keys and values mentioned in Section 5.1: in our imple-
mentation, XIA modules for keys have 8 attention heads,
and XIA for values have a single attention head. Moreover,
we add a skip-connection for the MHA module followed by
2 FC layers. XIA modules for leader/follower do not share
weights.

The proposed XIA module is integrated at several stages
of the computing flow as shown in Figure 4. More precisely,
we refine all keys:

K̃`
i = XIA(K`

i ,K
f
i ), K̃f

i = XIA(Kf
i ,K

`
i ), (4)

and analogously for the values. XIA could be potentially
generalised to any number of participants by considering
either several XIA modules and fusing their outcome, or
performing the fusion at the input of XIA module.
5.3. Pose Normalization

Raw poses of ExPI are represented in world coordinate,
while the motion prediction task aims at only predicting the
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Table 1. Results on common action split with the two evaluation metrics (in mm). Lower value means better performance. Obviously, our
proposal outperforms all the other methods both on JME and AME.

Action A1 A-frame A2 Around the back A3 Coochie A4 Frog classic A5 Noser A6 Toss Out A7 Cartwheel AVG

Time (sec) 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0

Res-RNN [50] 83 141 182 236 127 224 305 433 99 177 239 350 74 135 182 250 87 152 201 271 93 166 225 321 104 189 269 414 95 169 229 325
LTD [49] 70 125 157 189 131 242 321 426 102 194 260 357 62 117 155 197 72 131 173 231 81 151 200 280 112 223 315 442 90 169 226 303
Hisrep [47] 52 103 139 188 96 186 256 349 57 118 167 240 45 93 131 180 51 105 149 214 61 125 176 252 71 150 222 333 62 126 177 251
MSR [19] 56 100 132 175 102 187 256 365 65 120 166 244 50 95 127 172 54 100 138 202 70 132 182 258 82 154 218 321 69 127 174 248JM

E

Ours 49 98 140 192 84 166 234 346 51 105 154 234 41 84 120 161 43 90 132 197 55 113 163 242 62 130 192 291 55 112 162 238

Res-RNN [50] 59 102 132 167 62 112 152 229 57 102 139 215 48 85 113 157 51 90 120 167 53 94 126 183 74 131 178 265 58 102 137 197
LTD [49] 51 92 116 132 51 91 116 148 43 80 103 130 38 70 89 111 39 70 90 116 42 75 94 123 52 101 139 198 45 83 107 137
Hisrep [47] 34 69 97 130 44 84 115 150 32 65 91 121 27 56 82 112 28 58 85 121 34 66 88 115 42 83 120 171 34 69 97 131
MSR [19] 41 75 99 126 54 96 129 180 41 74 98 135 34 61 82 106 33 59 79 109 42 71 93 124 57 103 146 210 43 77 104 141A

M
E

Ours 32 68 99 128 41 82 116 163 29 58 84 116 24 50 73 96 24 51 75 109 31 62 86 114 41 81 115 160 32 65 93 127

Figure 5. Left: Percentages of improvement of our method comparing with different state-of-the-art methods, measured by average JME
error on the common action split, at different forecast time. Lower value means closer performance with our model. Our method surpasses
these methods up to 10 ∼ 40% on short term, and 5 ∼ 30% on long term. Right: Joint-wise JME improvement(mm) of our method over
Hisrep [47] and MSR [42]. Darker color means larger improvement.

relative dynamics related to the root joint, thus we need to
normalise the data by removing the displacement of the root
joint. In the case of single person motion prediction, pose
normalization can be easily done by defining a coordinate
by selected root joints. We generalize this to the case of
multi-person, where we normalize all the people in the same
scene by the root joints of one selected person. Specifically,
at every frame, we take the the root of the leader (middle of
the two hips) as coordinate origin, use the root point and left
hip of leader to define x-axis, and use the neck of leader to
determine XOZ plane. We normalize the joints of each per-
son to this coordinate, then the pose errors can be computed
directly in this coordinate. More precisely, we represent
the raw poses in world coordinate as Pw ∈ {P `w, P fw}, and
TP `

w,t
is the rigid transformation aligning the two actors to

the leader’s coordinate system. The normalized coordinates
are thus P `t = TP `

w,t
P `w,t, and P ft = TP `

w,t
P fw,t. In the fol-

lowing P shall always represent the normalized pose unless
specified otherwise.
6. Experimental Evaluation

This section describes the experimental protocol on
ExPI, and discuss the results of our proposed method.

6.1. Splitting the ExPI Dataset

As described in Section 4.1, we have recorded 16 actions
in our ExPI dataset. Seven of them are common actions (A1

to A7) that are performed by both of the 2 couples, we de-

note them asA1
c performed by couple 1 andA2

c by couple 2.
The other actions are couple-specific, which are performed
only by one couple: we denote the actions performed by
couple 1 (A8 to A13) as A1

u, and actions by couple 2 (A14

to A16) as A2
u. With these notations, we propose three data

splits.
Common action split. Similar to [32], we consider the
common actions performed by different couples of actors
as train and test data. More precisely,A2

c is the train dataset
and A1

c is the test dataset. Thus, train and test data contain
the same actions but performed by different people.
Single action split. Similar to [22, 33], we train 7 action
specific models separately for each common action, by tak-
ing one action from couple 2 as train set and the related one
from couple 1 as test set.
Unseen action split. The train set is the entire set of com-
mon actions {A1

c ,A2
c}. We regard the extra couple-specific

actions {A1
u,A2

u} as unseen actions and use them as our
test set. Thus the train and test data contain both couples of
actors, but the test actions are not used in training.

To sum up, common action split is designed for a single
model on different actions, single action split is designed
for action-wise models, and unseen action split focuses on
testing unseen actions to measure methods generalization.

6.2. Evaluation Metrics

The most common metric for evaluating 3D joint po-
sition in pose estimation and motion prediction tasks

6



Table 2. Results on single action split with the two evaluation metrics (in mm). Lower value means better performance. Seven action-wise
models are trained independently. Our method performs the best in 5 actions, and close to the best for the other 2 actions.

Action A1 A-frame A2 Around the back A3 Coochie A4 Frog classic A5 Noser A6 Toss Out A7 Cartwheel

Time (sec) 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0

Res-RNN [50] 75 131 171 226 122 215 287 403 97 174 235 329 73 131 177 246 76 136 184 255 100 184 252 357 88 162 219 293
LTD [49] 70 126 155 183 131 243 312 415 102 194 252 338 62 117 153 203 71 131 171 231 81 151 199 299 112 223 306 411
Hisrep [47] 66 118 153 190 128 231 308 417 74 143 205 295 64 120 159 191 63 121 166 227 90 168 232 312 88 166 232 332
MSR [19] 64 108 136 171 119 210 282 385 79 144 189 265 59 103 134 173 65 118 162 225 86 151 201 283 96 178 255 362JM

E

Ours 64 120 160 199 109 200 275 381 59 117 174 277 60 116 162 209 53 106 152 221 65 122 166 223 74 144 203 301

Res-RNN [50] 56 99 129 163 61 110 150 229 53 96 131 188 46 81 106 142 44 79 106 147 53 100 162 176 70 133 163 198
LTD [49] 51 93 114 127 51 91 116 162 43 80 100 126 38 70 88 118 39 70 90 125 42 75 93 123 52 101 137 188
Hisrep [47] 45 83 106 118 57 102 135 178 39 72 100 132 41 77 103 119 35 70 97 125 46 82 107 137 48 90 121 169
MSR [19] 46 79 98 118 60 107 141 192 48 86 111 150 39 68 88 111 39 69 91 121 55 93 117 156 66 118 163 222A

M
E

Ours 43 84 115 131 53 99 136 185 35 68 98 140 37 74 106 128 29 59 86 125 39 72 94 119 43 82 112 152

is the mean per joint position error MPJPE(P,G) =
1
J

∑J
j=1 ‖Pj −Gj‖2, where J is the number of joints, Pj

and Gj are the estimated and ground truth position of joint
j. Based on MPJPE, we propose two different metrics to
evaluate the multi-person motion task.
Joint mean error (JME): We Propose Joint Mean per joint
position Error to measure poses of different persons in a
same coordinate, and denote it as JME for simplicity:

JME(P,G) = MPJPE(P,G), (5)

where P and G are normalized (see Section 5.3) predic-
tion and ground truth. JME provides an overall idea for the
performance of collaborative motion prediction by consid-
ering the two interacted persons jointly as a whole, mea-
suring both the error of poses and the error of their relative
position.
Aligned mean error (AME): We propose Aligned Mean
per joint position Error to measure pure pose error without
the position bias. We first erase the errors on the relative
position between the two persons by normalizing the poses
independently to obtain P̂ , Ĝ. However the precision of P̂
is importantly influenced by the joints that are used to de-
termine the coordinate (hips and back). To mitigate this
effect, we compute the best rigid alignment TA between the
estimated pose and the ground-truth using Procrustes anal-
ysis [24]:

AME(P,G) = MPJPE(TA(P̂ , Ĝ), Ĝ), (6)

where P̂ ∈ [P̂ `, P̂ f ] are independently normalized predic-
tions P̂ `t = TP `

t
P `t and P̂ ft = TP f

t
P ft , and TP is the nor-

malisation transformation computed from the pose P as de-
fined in Section 5.3. The same calculation is done for the
ground truth Ĝ. This normalization is only used for evalua-
tion purpose.

6.3. Implementation Details

Since this is the first time the collaborative motion pre-
diction task is presented in the literature, there are no avail-
able methods to compare with. Thus we choose 4 code-
released state-of-the-art methods of single person motion

prediction [19, 47, 49, 50], and implement their released
codes6 on ExPI dataset. For fair comparison, all these mod-
els are trained with 50 frames of input, train/test for the
leader and the follower separately.

We train our model for 25 epochs and calculate the aver-
age MPJPE loss of 10 predicted frames. As the data is nor-
malized by the leader, the corresponding branch converges
faster, so we compensate by exponentially down-weighting
the loss of the leader with the number of epochs ε, using the
loss function: L = Lf + 10−εLl,.

When predicting longer horizons, we use the predicted
motion as input to predict future motion. Inspired by [47],
we take 64 sub-sequences for each sequence to reduce the
variance of the test results. Overall, we have 7k and 2.3k
sub-sequences for training and testing respectively in the
common action split and the single action split, and 12k /
2.9k training/testing samples in the unseen action split.

6.4. Results and Discussion
Common action split. Table 1 reports the results on the
common action split. We observe that our proposed method
outperforms other methods systematically almost for all ac-
tions, in all metrics and for different testing time. In Fig-
ure 5-left we calculate the percentage of improvement of
our method compared with the state-of-the-art methods,
and find that we significantly surpass these methods up to
10 ∼ 40% on short term, and 5 ∼ 30% on long term.
We further compare our per-joint results with Hisrep [47]
and MSR [19] in Figure 5-right, and observe that our pro-
posed method gets better results on almost on all the joints.
More importantly, the keypoints of the limbs (joints of arms
and legs) are improved largely. This is reasonable as in-
teraction between persons comes mostly through the limbs,
while joints on the torso have little influence on it. So our
cross-interaction attention is able to improve the accuracy
on the limbs more than on the torso. We could also no-
tice the large improvement on the feet of the follower which
usually fly in the air, indicating that our method works even
better for these extreme high dynamic joints.

6All the codes we use are under MIT license.
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Table 3. Action-wise results on unseen action split with the two evaluation metrics (in mm). Lower value means better performance. Our
method still performs the best on most of the unseen actions and on the average result.

Action A8 A9 A10 A11 A12 A13 A14 A15 A16 AVG

Time (sec) 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8

Res-RNN [50] 239 312 371 193 256 303 189 257 310 305 425 520 215 289 348 165 214 252 214 293 357 149 187 210 167 226 277 204 273 327
LTD [49] 239 324 394 175 226 259 148 191 220 176 240 286 143 178 192 146 193 226 252 333 387 174 228 264 139 184 217 177 233 272
Hisrep [47] 195 283 358 121 169 206 92 129 160 129 193 245 80 104 121 112 154 187 157 219 257 134 190 233 96 146 187 124 176 218
MSR [19] 297 368 451 250 317 395 173 231 303 241 335 416 280 345 449 158 195 246 173 231 289 95 117 134 153 216 268 202 261 327JM

E

Ours 191 287 377 118 165 203 91 129 162 122 183 232 81 107 128 106 150 185 156 216 256 126 175 213 96 152 205 121 174 218

Res-RNN. [50] 124 165 195 125 157 181 131 166 189 148 198 240 149 169 192 102 128 147 181 237 279 100 129 144 93 124 147 128 164 190
LTD [49] 95 123 146 85 106 116 74 91 101 86 115 137 98 125 134 85 110 124 106 136 155 91 119 135 72 96 116 88 113 129
Hisrep [47] 101 144 176 61 82 94 49 67 80 73 105 129 53 73 86 64 89 104 86 120 142 73 104 128 54 82 104 68 96 116
MSR [19] 377 463 315 360 467 308 260 276 212 158 191 211 524 699 344 212 245 167 262 232 230 67 86 98 116 133 142 258 308 225A

M
E

Ours 95 137 171 58 80 93 51 70 84 70 105 134 53 73 88 63 88 104 82 116 142 69 97 120 52 79 104 66 94 116

Table 4. Ablations. ’mix /cat /sep’ use the single person motion
prediction model (Hisrep [47]) for multi-person by: mixing two
poses together / concatenate two poses as a single vector / train two
person-specific models. ’w.o. XIA’ indicates training leader and
follower in parallel using our defined loss without XIA module;
’XIA kqv / kq / kv / v’ use XIA module to update key, value and
query of the temporal attention, or just some of them.

JME AME

Time (sec) 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

mix 69 132 185 233 271 41 77 104 126 142
cat 61 123 176 223 262 37 71 99 121 138
sep 62 126 177 218 251 34 69 97 116 131

w.o. XIA 58 120 174 217 249 33 68 98 118 131
XIA kq 58 118 169 211 245 33 67 95 114 128

XIA kqv 57 117 170 215 251 32 65 95 116 131
XIA v 56 116 168 210 244 32 66 94 113 127

XIA kv 55 112 162 204 238 32 65 93 112 127

Single action split and unseen action split. We also re-
ported our proposed method by reporting the results on sin-
gle action split and unseen action split. For single action
split, XIA outperforms the state-of-the-art methods also on
action-specific models, as shown in Table 2. Interestingly,
we observe that the performance on single action split is
worse than the corresponding results on common action
split, meaning that training on different actions helps regu-
larising the network for this very challenging collaborative
extreme motion prediction task. Regarding unseen action
split shown in Table 3, we can see that XIA still outper-
forms the state-of-the-art methods on most of the actions,
demonstrating the robustness of our method.
Qualitative results. Figure 1 shows some example of
our visualisation results compared to Hisrep et al. [47],
MSR [19] and the ground truth, on the common action split.
We can see that the poses estimated by our method are much
closer to the ground truth than the other methods, and it
works well even on some extreme actions where other meth-
ods totally fail (Figure 1-right). More qualitative examples
could be found in the supplementary material.
Ablation study. Taking Hisrep [47] as example, we first
tried 3 different ways of training the single-person motion
prediction models on our multi-person dataset: (i) ’mix’:
train a single model use data of the two poses {P l, P f};

(ii) ’cat’: concatenate the two poses as a single input vector
[P l, P f ]; (iii) ’sep’: train two person-specific models for P l

and P f . Since ’sep’ gives best performance, all the state-
of-the-art methods reported above in this paper is using this
setting. As for our collaborative motion prediction model,
we report performances of several different design choices
of our model. We found that updating the key and values
of the temporal attention using our XIA module provide the
best results. We demonstrate the interest of the design of
our method as the proposed one is the best in performance
and our method significantly improves all the single-person
motion prediction methods.
Limitations. Collecting clean and reusable 3D pose data re-
quires specific equipment and human resources. In addition,
recording extreme poses requires actors with specific skills.
Overall, ExPI is rare and difficult to reproduce/extend. This
is clearly a limitation in the era of data-hungry deep learn-
ing architectures.

7. Conclusion
Current motion prediction methods are restricted to sin-

gle person. We move beyond existing approaches for 3D
human motion prediction by considering a scenario with
two persons performing highly interactive activities. We
collected a new dataset called ExPI of professional actors
performing dancing actions. ExPI is annotated with se-
quences of 3D body poses and shapes, opening the door to
not only being applied for interactive motion prediction but
also for single-frame pose estimation or multi-view 3D re-
construction. In order to learn the interacted motion dynam-
ics, we have introduced a baseline method trained with ExPI
that exploits historical information of both people in an
attention-like fashion. Results of our method show consis-
tent improvement compared to methods that independently
predict the motion of each person.
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Supplementary Material

A. Personal data/Human subjects

Our data collection strategy went through an Ethics Re-
view Board, and the recordings where authorised, together
with the associated Consent Form. Our data does not con-
tain any personally identifiable information beyond the im-
ages themselves. The data will be shared respecting all na-
tional and international regulations.

B. More information about the dataset

B.1. Data Post-processing

As introduced in the main paper, it is a common phe-
nomena in lab-based interaction Mocap datasets that many
points are missing due to occlusions or tracking loss. This is
even worse when dealing with extreme poses. To overcome
this we have designed and implemented a 3D hand labelling
toolbox.

For each missed value, we choose two orthogonal views
among the several viewpoints, and label the missed key-
points by hand on these two frames to get two image coor-
dinates. We then use the camera calibration to back project
these two image coordinates into the 3D world coordinate,
obtaining two straight lines. Ideally, the intersection of
these two lines is the world coordinate of this missing point.
Since these two lines do not always intersect, we find the
nearest point, in the least-squares sense, to these two lines
to approximate the intersection.

In this procedure we did not use the distortion parame-
ters, since we observed that the distortion error is negligible
on the views we choose for labeling. The intersection is pro-
jected into 3D and various 2D images to confirm the quality
of the approximation by visual inspection. Figure 6 shows
an example of labeling the missing joints.

B.2. Action names and joint order

Table 5 shows the name of the 16 actions performed by
the couples of actors in ExPI. In the video of the supplemen-
tary material, we include example videos for each of the 16
actions. In the ExPI dataset, the pose of each person is an-
notated with 18 keypoints, so we have 36 keypoints for both
actors. The order of the keypoints is as follows, where “F”
and “L” denote the Follower and the Leader respectively,
and “f”, “l” and “r” denote “forward”, “left” and “right”:

Figure 6. Data-cleaning. Top:Data before cleaning. The two
joints ’F-back’ and ’F-fhead’ are missed. Bottom: Data after
cleaning. The yellow marks indicates the two relabeled joints.

Table 5. Composition of the ExPI Dataset. The seven first actions
are performed by both couples. Six more actions are performed by
Couple 1, while three others by Couple 2.

Action Name Couple 1 Couple 2

A1 A-frame X X
A2 Around the back X X
A3 Coochie X X
A4 Frog classic X X
A5 Noser X X
A6 Toss out X X
A7 Cartwheel X X

A8 Back flip X
A9 Big ben X
A10 Chandelle X
A11 Check the change X
A12 Frog-turn X
A13 Twisted toss X

A14 Crunch-toast X
A15 Frog-kick X
A16 Ninja-kick X

(0) ‘L-fhead’ (1) ‘L-lhead’ (2) ‘L-rhead’
(3) ‘L-back’ (4) ‘L-lshoulder’ (5) ‘L-rshoulder’
(6) ‘L-lelbow’ (7) ‘L-relbow’ (8) ‘L-lwrist’
(9) ‘L-rwrist’ (10) ‘L-lhip’ (11) ‘L-rhip’
(12) ‘L-lknee’ (13) ‘L-rknee’ (14) ‘L-lheel’
(15) ‘L-rheel’ (16) ‘L-ltoes’ (17) ‘L-rtoes’
(18) ‘F-fhead’ (19) ‘F-lhead’ (20) ‘F-rhead’
(21) ‘F-back’ (22) ‘F-lshoulder’ (23) ‘F-rshoulder’
(24) ‘F-lelbow’ (25) ‘F-relbow’ (26) ‘F-lwrist’
(27) ‘F-rwrist’ (28) ‘F-lhip’ (29) ‘F-rhip’
(30) ‘F-lknee’ (31) ‘F-rknee’ (32) ‘F-lheel’
(33) ‘F-rheel’ (34) ‘F-ltoes’ (35) ‘F-rtoes’
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Table 6. Comparison of ExPI with other publicly available datasets
commonly used for human motion prediction.

Dataset AMASS [46] H3.6m [32] 3DPW [67] MuPoTS [53] ExPI

3D joints X X X X X
Video X X X X X
Shape X X X X
Multi-person X X X
Extreme poses X X
Multi-view X

B.3. Comparison with other datasets

Table 6 compares our dataset with several other public
available 3D human datasets that are widely used in recent
work [19, 47, 49, 50]. From this table, we can see that our
dataset is eminently suitable for the task of multi-person ex-
treme motion prediction, and it is also able to be used in
human pose estimation in rare condition and challenging
human shape estimation.

C. More Qualitative results
More qualitative results could be found at the end of this

file. We compare our model with models that independently
predict the motion of each person, i.e. Res-RNN [50],
LTD [49], Hisrep [47] and MSR [19]. Our results are much
closer to the ground truth, and it works well even on some
extreme actions where other methods totally fail.
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