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3 CentraleSupélec, IETR, France.
4 LPNC, UMR 5105, CNRS, 38000 Grenoble, France.

ar
X

iv
:2

00
8.

12
59

5v
1 

 [
cs

.L
G

] 
 2

8 
A

ug
 2

02
0



Abstract

The Variational Autoencoder (VAE) is a powerful deep generative model that
is now extensively used to represent high-dimensional complex data via a low-
dimensional latent space that is learned in an unsupervised manner. In the
original VAE model, input data vectors are processed independently. In the re-
cent years, a series of papers have presented different extensions of the VAE to
sequential data, that not only model the latent space, but also model the tempo-
ral dependencies within a sequence of data vectors and/or corresponding latent
vectors, relying on recurrent neural networks or state space models. In this
paper we perform an extensive literature review of these models. Importantly,
we introduce and discuss a general class of models called Dynamical Variational
Autoencoders (DVAEs) that encompass a large subset of these temporal VAE
extensions. Then we present in details seven different instances of DVAE that
were recently proposed in the literature, with an effort to homogenize the no-
tations and presentation lines, as well as to relate those models with existing
classical temporal models (that are also presented for the sake of completeness).
We reimplemented those seven DVAE models and we present the results of an
experimental benchmark that we conducted on the speech analysis-resynthesis
task (the PyTorch code will be made publicly available). An extensive discus-
sion is presented at the end of the paper, aiming to comment on important issues
concerning the DVAE class of models and to describe future research guidelines.
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Chapter 1

Introduction

Deep Generative Models (DGMs) are a large family of probabilistic models that
are currently of high interest in the machine learning and the signal processing
scientific communities. Basically, DGMs result from the combination of con-
ventional generative probabilistic models1 and Deep Neural Networks (DNNs).
For both conventional and deep generative models, it is difficult to establish a
neat taxonomy due to the richness of the domain and many percolations across
the different approaches. Maybe those models can be grossly classified in the
following two categories. The first category groups models with an explicit for-
mulation of a model of the data probability density function (pdf). The second
category groups models that can generate data “directly,” without using an
explicit formulation and manipulation of a pdf model. Generative Adversar-
ial Networks (GANs) are a now very popular example of this second category
(Goodfellow et al., 2014, 2016; Goodfellow, 2016).

In the present review, we focus on the first category. Moreover, we consider
the very important case where a parametric pdf model is used. One of the very
nice features of generative models based on explicit formulation of the model
pdf is that they can be easily plugged into a more general Bayesian framework,
not only for generating data, but also for modeling the data structure (without
actually generating them) in many different applications, e.g., data denoising or
data transformation. In any case, the pdf model has to be as close as possible
to the true pdf of the modeled data, that is generally unknown. To this aim,
the model has to be trained from data, and model parameter estimation is
generally done by following the Maximum Likelihood methodology (Goodfellow
et al., 2016; Bishop, 2006; Koller and Friedman, 2009). Those principles are of
course valid for both conventional generative models and DGMs, but in the case
of DGMs the parameters of the pdf model are generally the output of DNNs,
which makes model training potentially difficult (we will come back on that
important point in the following).

1In the present context, “conventional” refers to non-deep models, e.g., classical Hidden Markov
Models and, more generally, Bayesian Networks. We discuss Bayesian Networks in the following.
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1.1 Deep Dynamical Bayesian Networks

In the present review, we focus on an important sub-family of DGMs: Deep
Dynamical Bayesian Networks (DDBNs). As the name indicates, DDBNs are
built on the following models:

• Bayesian Networks (BNs) are a popular class of probabilistic models, for
which i) the dependencies between all involved random variables are ex-
plicitly represented by pdf models,2 and ii) those dependencies can be
schematically represented using a directed acyclic graph (Bishop, 2006;
Koller and Friedman, 2009). The structure of those dependencies often
reflects (or originate from) some underlying hierarchical generative pro-
cess.

• Dynamical Bayesian Networks are BNs that include temporal dependen-
cies, and which are widely used to model dynamical systems and/or data
sequences. Briefly stated, Dynamical BNs are BNs “repeated over time,”
that is to say, they exhibit a repeating dependency structure (a time-slice
at discrete time t) and some dependencies across these time-slices (the dy-
namical models). As we will see later, Dynamical BNs are closely linked
to recurrent neural networks (RNNs) and State Space Models (SSMs).
Basically, this is because the temporal dependencies in Dynamical BNs
are often implemented either as a deterministic recursive process, as in
RNNs, or as a first-order Markovian process, as in usual SSMs. In fact,
RNNs and SSMs can be seen as special cases of Dynamical BNs.

• Deep Bayesian Networks (Deep BNs) combine BNs with DNNs: DNNs are
used to generate the parameters of the modeled distributions. This gives
the latter the ability to be high-dimensional and highly multi-modal while
having a reasonable number of parameters. In short, Deep BNs have the
potential to nicely combine the “explainability” of Bayesian models with
the modeling power of DNNs.

DDBNs are thus a combination of all those aspects. They can be equally seen
as dynamical versions of Deep BNs (i.e., Deep BNs including temporal depen-
dencies) or deep versions of Dynamical BNs (i.e., Dynamical BNs mixed with
DNNs). As an extension of Dynamical BNs, DDBNs are expected to be pow-
erful tools to model dynamical systems and/or data sequences. However, as
already mentioned above, the combination of probabilistic modeling with DNNs
in Deep BNs generally makes the training more complex and costly (compared
to conventional BNs with the same overall structure but non-deep models for
the generation of distribution parameters). This is an even more serious issue
for DDBN where the repeating structure due to temporal modeling adds an
additional level of complexity.

2Hence BNs belongs to the first category of the afore-mentioned simplistic taxonomy.
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1.2 Variational inference and Variational Autoen-
coders

Recently, the application of the variational inference methodology (Jordan et al.,
1999), (Bishop, 2006, Chapter 10), (Šmı́dl and Quinn, 2006), (Murphy, 2012,
Chapter 21) to a fundamental Deep BN architecture3 has led to efficient in-
ference and training of the resulting model called a Variational Autoencoder
(VAE) (Kingma and Welling, 2014). A similar approach was proposed almost
at the same time in (Rezende et al., 2014).4 The VAE is directly connected to
the concepts of latent variable and unsupervised representation learning : The
observed, possibly high-dimensional, random variable representing the data of
interest is assumed to be generated from an unobserved low-dimensional latent
variable through a probabilistic process. This latent variable is somehow at the
heart of the overall model: It is assumed to “encode” the observed data in a
compact manner, so that new data can be generated from new values of the
latent variable. Moreover, one wishes to extract a latent representation that
is disentangled, i.e., different latent coefficients encode different properties or
different factors of variation of the data. When successful, this provides a nice
interpretability and control of the data generation/transformation process.

The automatic discovery of the latent space structure is part of the model
training process. The inference process, that is the estimation of latent variable
values from observed data, also plays a major role. As we will see in more detail
later, in a Deep BN the “true” posterior distribution (that is the posterior
distribution of the latent variable given the observed variable corresponding
to the generative model) is generally not tractable. It is thus replaced with
a parametric approximate posterior distribution (i.e., an inference model) that
is implemented with a DNN.5 Since the observed data likelihood function is
also not tractable, the estimation of the model parameters is done by chaining
the inference model (aka the encoder in the VAE framework) and the generative
model (the decoder) and maximizing a lower bound of the log-likelihood function
called the variational lower bound (VLB) over a training dataset. From now
on, we refer to this general variational inference and training methodology as
the VAE methodology.

In summary, the VAE methodology enables deep unsupervised representa-
tion learning while providing efficient inference and parameter estimation in a
Bayesian framework. As a result, the seminal papers (Kingma and Welling,
2014; Rezende et al., 2014) have had and continue to have a very strong impact
on the machine learning community. VAEs have been applied to many signal
processing problems such as the generation and the transformation of images
and speech signals (we provide a few references in Section 2).

3Basically, a low-dimension to high-dimension generative feed-forward deep neural network.
4(Kingma and Welling, 2014) and (Rezende et al., 2014) were both pre-published in 2013 as

ArXiv papers. Connections also exist with (Mnih and Gregor, 2014).
5Note that the idea of using an artificial neural network to approximate an inference model dates

back to the early work presented in (Hinton et al., 1995).
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1.3 Dynamical VAEs

As a Deep BN, the original VAE does not include temporal modeling. This
means that every data vector from a dataset is processed independently of the
other data vectors (and the corresponding latent vector is also processed inde-
pendently of the other latent vectors). In the years following the publication of
(Kingma and Welling, 2014; Rezende et al., 2014), the VAE methodology was
extended and successfully applied to several more complex Deep BNs. In par-
ticular it has been applied to Deep BNs with a temporal model, i.e., DDBNs,
dedicated to model sequential data exhibiting temporal correlation. This was
reported in a series of papers including (Bayer and Osendorfer, 2014; Fabius and
van Amersfoort, 2014; Krishnan et al., 2015; Chung et al., 2015; Gu et al., 2015;
Fraccaro et al., 2016; Krishnan et al., 2017; Fraccaro et al., 2017; Goyal et al.,
2017; Hsu et al., 2017b; Yingzhen and Mandt, 2018; Leglaive et al., 2020). In
addition to including temporal dependencies, the unsupervised representation
learning spirit of the VAE is preserved and cherished in those studies: Those
DDBNs mix observed and latent variables, and aim not only at modeling data
dynamics but also at discovering the latent factors governing them.

In practice, those different models vary in how they define the dependencies
between the observed and latent variables, how they define and parameterize the
corresponding generative pdfs, and, importantly, how they define and parame-
terize the inference model. They also differ on how they combine the variables
with RNNs to model temporal dependencies, at both generation and inference.
In contrast, and remarkably, the training phase is quite similar between models
since it is consistently based on chaining the encoder and decoder and maximiz-
ing the VLB over a training dataset, that is applying the VAE methodology,
possibly with a few adaptations and refinements.

In the end, it is difficult to say if we have to see those models as variational
DDBNs, that is DDBNs immersed in the VAE framework, or as Dynamical
VAEs (DVAEs), that is VAEs including a temporal model for modeling sequen-
tial data. They are probably both! In the following of the paper, as well as in
its title, we chose to use the second term, that is Dynamical VAEs, since we
assume that the term “VAE” is currently more popular than the term “DBN,”
and “Dynamical VAEs” gives a more speaking first evocation of those models,
compared to “variational DDBNs.”

1.4 Aim of the paper

The aim of the paper is manifold. First, to provide the background necessary
to understand and motivate DVAEs. Second, to introduce the DVAE as a
general class of models that encompasses many different combinations of VAE
and temporal models, and provide its formal definition. Third, to review the
recent literature that inspired this definition, and to present in details seven
models that are representative of the DVAE class, under the general proposed
definition. Finally, to compare the re-implementation of these seven models and
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discuss their advantages and drawbacks as well as future research guidelines.
In more details, the contributions of this paper are the following:

• We provide a formal definition of what a Dynamical Variational Autoen-
coder is, what are its main properties and characteristics and how is it re-
lated to previous classical models such as VAE, RNN or SSM. We discuss
the importance of correctly defining the dependencies between random
variables as well as how these dependencies are implemented. Finally, we
discuss the general methodology used to identify the stochastic dependen-
cies of the latent variables at inference time and to compute the variational
lower bound used for training DVAEs.

• We give a proper, detailed and complete technical description of the se-
lected DVAE models (which is often overviewed in the original papers,
independently of the authors’ good will, just because of lack of room).
This hopefully will enable the reader to access to the technical substance
of those models much more rapidly and “comfortably” than by analyzing
and comparing the original papers by himself/herself. We have spent ef-
fort on consistence of presentation: For most models that we detail, we
first present the generative equations in time-step form and then for an
entire data sequence. Then we present the structure of the “true” poste-
rior distribution of latent variable given the observed data, and then we
present the inference model as proposed in the original papers. Finally, we
present the corresponding VLB. In the original papers, some parts of this
complete picture are often missing (not always the same parts!) because
of lack of room.

• Importantly, we also have spent some effort to make the notations homo-
geneous across models. In particular, for some models, we have changed
the time indexation, and sometimes the name, of some variables. We took
great care to do that consistently in the generative model, the inference
part, and the VLB, so that this change of notation does not affect the
essence and the functioning of the model. Together with consistency of
presentation, this enables to better put in evidence the commonalities and
the differences across models, and make their comparison easier. Notation
remarks are specified in independent dedicated paragraphs when necessary
all through the paper to facilitate the connection with the original papers.

• We relate those recent developments with history: Although there are al-
ready many papers on the VAE, including tutorials, we present it in the
first technical section because all subsequent DVAE models rely on the
VAE methodology. Then we show how DVAEs are connected to RNNs
and SSMs. The unified notations that we use may help readers from dif-
ferent communities (machine learning, signal processing, control theory,
etc.) that are not familiar with those connections to discover them com-
fortably.
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• We discuss the links, similarities and differences of the different models.
We comment on the choices of the authors of the reviewed papers regarding
the inference model, its relation with the “true” posterior distribution, and
implementation issues. Note that in the present review, we discuss only
high-level implementation issues, that is the general structure of the neural
network that implements a given DVAE at generation or at inference (e.g.,
the type of RNN). We do not discuss practical implementation issues (e.g.,
the number of layers), which are too low-level in the present technical
review context.

• We have reimplemented the seven models detailed in this review, and we
have evaluated these models on a basic task (analysis-resynthesis of speech
signals). The comparison of performance of the different models from the
analysis of the literature is a very difficult task, for many reasons: All
models are not evaluated on the same data; Chronological analysis of the
publications naturally reveals that a new model improves over some previ-
ously proposed model(s), at least on some aspect(s), but we all know that
this can depend on model tuning and experimental setup, and comparison
done with a subset of previous models is incomplete in essence, etc. In
short, an extended benchmark of DVAE models is not yet available. On
the other hand, conducting an extended benchmark is a huge amount of
work, since there are many possible configurations for the models, and
many tasks for evaluating them. In particular, as we will see in this re-
view, it is not yet clear how to evaluate the “disentanglement power” of
the extracted latent space. For all those reasons (and also because this re-
view paper is already quite long!), we limit the benchmark to a simple task
in the present review. We plan to compare more extensively the models in
future studies. We think that reimplementing the models, with the same
great attention to unify “presentation and notations” across models in
the code, and delivering the code to the community is another significant
contribution of this review work.

In summary, we believe that comparison of models across papers is a difficult
task in essence, whatever the efforts spent by the authors of the original papers,
because of the use of different notations, presentation lines, missing information,
etc. We hope that the present review paper and accompanying code will help
the readers in more easily accessing the technical substance of DVAEs, and see
their cross-connections and their connections with pre-existing classical models.

Before we give the outline for the rest of the paper, it is useful to mention
what we do not present in this review paper:

• All the models we review in a detailed manner consider discrete-time se-
quences of continuous-valued random variables, for both observed and la-
tent variables. Discrete latent random variables can be incorporated in
those models, in the line of what is done for conditional-VAEs (Sohn
et al., 2015; Zhao et al., 2017) for exemple. Temporal models with bi-
nary observed and latent random variables can be found in (Boulanger-
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Lewandowski et al., 2012; Gan et al., 2015). Those models are based
on Restricted Boltzman Machines (RBMs) or Sigmoid Belief Networks
(SBNs) combined with RNNs. Detailed analysis of this kind of models is
out of the scope of the present review. We also do not detail VAE-based
models specifically designed for generating discrete sequential data from
a continuous latent space, in particular for text and dialogue generation
(Bowman et al., 2016; Miao et al., 2016; Serban et al., 2016, 2017; Yang
et al., 2017; Semeniuta et al., 2017; Hu et al., 2017; Zhao et al., 2018;
Jang et al., 2019). These models often involve specific natural language
processing (NLP) issues. Also, they generally have a many-to-one encoder
and a one-to-many decoder, that is a whole sentence (sequence of words) is
encoded into a single latent vector, which is in turn decoded into a whole
sentence. The same principle has been applied for music scores modeling
(Roberts et al., 2018). Even if those models can include some hierarchical
structure at encoding and/or at decoding, they do not consider a tempo-
ral sequence of latent vectors. In contrast, the “all-continuous” models
we focus on in this review rather functions in sequence-to-sequence mode
for both encoding and decoding, with a sequence of latent vectors corre-
sponding to the sequence of observed data.6 Yet, all those models remain
strongly connected in the VAE framework, starting with a similar over-
all encoding-decoding architecture and a similar inference and training
methodology. Therefore, some of the propositions made in the literature
for one type of models can be adapted and can reveal beneficial to the
other.

• As mentioned just above, we focus on models dedicated to process sequen-
tial data organized as a time sequence of vectors and encoded into a time
sequence of latent vectors. Therefore, although we mention a few VAE-
based models dedicated to (2D) image processing in this review, we do not
detail them, even if image rows or columns can be considered as sequences
of consecutive pixels, and even if many models exploit the correlation be-
tween neighboring pixels. In fact the original works on VAE (Kingma and
Welling, 2014), and many subsequent works, have considered application
to image generation and transformation. The correlation between neigh-
boring pixels was poorly exploited in early works since the conditional
generative model (conditioned on the latent variable) was pixelwise inde-
pendent. Subsequent works (Gulrajani et al., 2016; Chen et al., 2017; Lu-
cas and Verbeek, 2018) considered mixing the VAE latent representation
with a decoder exploiting local pixel correlations with either convolutive
or auto-regressive decoding (van den Oord et al., 2016a,b). Similarly to
the VAE models for text/dialogue generation mentioned above, VAEs for
image modeling generally apply many-to-one encoding and one-to-many

6Note that there also exist a few examples of “all continuous” versions with many-to-one encoding
and one-to-many decoding, e.g., a DVAE for anomaly detection in energy time series (Pereira
and Silveira, 2018) (coupled with an attention model) and the Factorized Hierarchical Variational
Autoencoder (FHVAE) (Hsu et al., 2017b) that we discuss in Section 12 for a reason that will
become clear at that time.
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decoding: They encode a whole image (that is a large number of pixels) in
a single low-dimensional latent vector. Also they rely on knowledge accu-
mulated on the use of deep neural networks for image processing, e.g., the
decomposition of an image into successive feature maps using successive
convolution layers and corresponding recomposition process, possibly com-
bined with a multi-level or hierarchical latent encoding (Gulrajani et al.,
2016; Shang et al., 2018). This makes those models a bit aside the tem-
poral models we focus on, even if, as for text/dialogue generation VAEs,
some propositions made in the literature on VAEs for image generation
can be exploited in a more general framework.

• Finally, in this review we focus on DVAEs trained with the variational
inference methodology, we do not review models based on GANs and more
generally on an adversarial training methodology. Examples of extensions
of “static” GANs to sequence modeling and generation, possibly including
hierarchical modeling and disentangled representation issues, can be found
in (Mathieu et al., 2016; Villegas et al., 2017; Denton and Birodkar, 2017;
Tulyakov et al., 2018; Lee et al., 2018). We can note that this approach
is particularly popular for separating content and motion in videos (an
application that, because of lack of room, we poorly discuss in this review).

1.5 Outline of the paper

The following of the paper is organized as follows. We start with the background.
We first present the VAE in Section 2, because this model is at the foundation
of subsequent DVAE models. Since the introduction of temporal models in the
VAE framework is closely linked to RNNs and SSMs, we rapidly present these
two latter classes of models in Section 3.

In Section 4, we present the general class of DVAE models (that encompasses
the seven detailed models): We give their definition, we discuss the variables
dependencies in the DVAE pdfs, and discuss the extension of the VAE method-
ology to the DVAE models. To our knowledge, this is the first time this class
of models is presented in such general and unifying manner.

The next seven sections are dedicated to the detailed DVAE models. In Sec-
tion 5, we present a basic example of combination of SSM with DNNs, trained
with the VAE methodology, hence a first exemple of DVAE: The Deep Kalman
Filter model (DKF) (Krishnan et al., 2015, 2017). Then we examine in de-
tails the Kalman Variational Autoencoder (KVAE) (Fraccaro et al., 2017) in
Section 6, the Stochastic Recurrent Neural Network (STORN) (Bayer and Os-
endorfer, 2014) in Section 7, the Variational Recurrent Neural Network (VRNN)
(Chung et al., 2015; Goyal et al., 2017) in Section 8, another type of Stochastic
Recurrent Neural Network (SRNN) (Fraccaro et al., 2016) in Section 9, the Re-
current Variational Autoencoder (RVAE) (Leglaive et al., 2020) in Section 10,
and finally the Disentangled Sequential Autoencoder (DSAE) (Yingzhen and
Mandt, 2018) in Section 11.
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In Section 12, we propose a more rapid overview of other DVAE models to
complement our DVAE literature review. The benchmark of the seven detailed
models on a basic speech modeling task is presented in Section 13. Finally, we
conclude this review with a discussion in Section 14.

We wish the reader to enjoy this DVAE tour.
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Chapter 2

Variational Autoencoders

In this section, we rapidly present the Variational Autoencoder and associated
variational methodology for model training and inference. An extended tutorial
paper on VAEs by the authors of the seminal paper (Kingma and Welling, 2014)
can be found in (Kingma and Welling, 2019) (an ArXiv pre-print of this tutorial
paper is also available.)

2.1 Principle

For clarity of presentation, let us start with an autoencoder (AE). As illustrated
in Fig. 2.1, an autoencoder is a DNN that is trained to replicate an input vector
x ∈ RF at the output (Hinton and Salakhutdinov, 2006) (Vincent et al., 2010).
At training time, the target output is thus set equal to x, and at test time the
output x̂ is an estimated value of x (i.e., we have x̂ ≈ x). An autoencoder usu-
ally has a diabolo shape, which provides a low-dimensional latent representation
z ∈ RL of the data vector x, with L � F , at the so-called bottleneck layer.
The right part of the AE, the decoder, tries to reconstruct x from z. Note that
so far, everything is deterministic: At test time, each time we feed the AE with
a specific input vector x0, the AE will provide the same corresponding output
x̂0.

The Variational Autoencoder (VAE) was initially proposed in (Kingma and
Welling, 2014; Rezende et al., 2014). It can been seen as a probabilistic version
of an AE, where the output of the decoder is not directly a value of x but the
parameters of a probability distribution of x. As we will see below, the same
probabilistic formulation applies to the encoding of z. The resulting proba-
bilistic model can be used to generate new data (from unseen values of z), to
transform existing data within an encoding-modification-decoding scheme, see,
e.g., (Blaauw and Bonada, 2016; Hsu et al., 2017a; Esling et al., 2018; Roche
et al., 2019), or as a prior distribution of x in more complex Bayesian models
for, e.g., speech enhancement (Bando et al., 2018; Leglaive et al., 2018; Pariente
et al., 2019; Leglaive et al., 2019) or source separation (Kameoka et al., 2018).
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︸ ︷︷ ︸
Encoder

︸ ︷︷ ︸
Decoder

x ez z dx x̂

Figure 2.1: Schematic representation of an autoencoder (probabilistic graphical
model enriched with DNN representation). The left trapezoid represents a high-
to-low dimensional encoder DNN (named ez), and the right trapezoid represents
a low-to-high dimensional decoder DNN (named dx). Calculation of the latent
variable z and output x̂ from input x is totally deterministic, as represented by
diamonds.

For clarity of presentation, at this point, it is convenient to separate the encoder
and the decoder.

2.2 VAE decoder

Let us start with the decoder, since it forms the generative part of the model.
Formally, the VAE decoder is defined by:

pθ(x, z) = pθx (x|z)pθz (z), (2.1)

with

pθx (x|z) = N
(
x;µθx (z),diag{σ2

θx (z)}
)

(2.2)

=

F∏
f=1

pθx (xf |z) =

F∏
f=1

N
(
xf ;µθx ,f (z), σ2

θx ,f (z)
)
, (2.3)

and

pθz (z) = N (z; 0, IL), (2.4)

where subscript f denotes the f -th entry of a vector, N
(
·;µ,Σ

)
denotes the

multivariate Gaussian distribution with mean vector µ and covariance matrix
Σ, diag{·} is the operator that forms a diagonal matrix from a vector by putting
the vector entries on the diagonal, and µθx : RL 7→ RF and σθx : RL 7→ RF+ are
non-linear functions of z modeled by a DNN. This DNN is called the decoder
network or the generation network, and is parametrized by a set of weights
and biases denoted θx .1 In standard VAE, the parameters θz are fixed, but we
write them explicitly to be coherent with the rest of the text, and we thus have
θ = θx ∪ θz . The decoder network is illustrated in Fig. 2.2 (right). For the

1pθx (x) is thus a generic notation for a parametric pdf of the random variable x, where θx is

the set of parameters. It is equivalent to p(x; θx ).
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︸ ︷︷ ︸
Encoder

︸ ︷︷ ︸
Decoder

x ez
µφ(x)
σφ(x)

z dx
µθ(z)
σθ(z)

x

Figure 2.2: Schematic representation of the VAE: Encoder (left) and decoder
(right). Dashed lines represent a sampling process. When the encoder and
decoder are cascaded, using the same variable name x at both input and output
is a bit abusive, but this is to be more consistent with the separate encoder and
decoder equations.

purpose of consistency with the presentation of the other models in the next
sections, we denote by dx the function implemented by the decoder DNN, i.e.,
we have:

[µθx (z),σθx (z)] = dx(z). (2.5)

Note that the VAE model and associated variational methodology was intro-
duced in (Kingma and Welling, 2014) in the very general framework of paramet-
ric distributions, i.e., independently of the practical choice of the pdfs pθx (x|z)
and pθz (z). The Gaussian case was then presented in (Kingma and Welling,
2014) as a major example. Of course, other pdfs (than Gaussian) can be used,
especially for pθx (x|z), depending on the nature of the data vector x. For ex-
ample, Gamma distributions better fit the natural statistics of speech/audio
power spectra (Girin et al., 2019). For simplicity of presentation and consis-
tency across models, in the present review pθx (x|z) is a Gaussian distribution
for all models.

Note also that a VAE decoder can be seen as a generalization of probabilistic
principal component analysis with a non-linear (instead of linear) relationship
between z and the parameters θx . Indeed the marginal distribution of x, pθ(x),
is given by:

pθ(x) =

∫
pθx (x|z)pθz (z)dz. (2.6)

Since any conditional distribution pθx (x|z) can provide a mode, pθ(x) can be
highly multi-modal (in addition to being potentially highly dimensional). With
this in mind it makes sense to set a diagonal covariance matrix in (2.2) since
marginal distributions of arbitrary complexity can be obtained by designing and
tuning the decoder network. Setting diagonal covariance matrices often makes
the mathematical derivations easier.

2.3 VAE encoder

Training the generative model (2.1) consists in learning the parameters θ from
a training dataset X = {xn ∈ RF }Ntrn=1, where the training vectors xn are
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assumed i.i.d. This is usually done by finding the values of the parameters θ
that maximize the training data marginal log-likelihood log pθ(X). Because the
relation between z and {µθx ,f (z), σ2

θx ,f
(z)} is modeled by a DNN, log pθ(X) is

intractable.2 Moreover, for the same reason, the posterior distribution pθ(z|x)
is also intractable, and thus using the classical Expectation-Maximization (EM)
algorithm is not possible.

Variational inference is a nice methodology to overcome these problems and
to efficiently train the VAE. It is grounded in two principles: i) Because the pos-
terior distribution pθ(z|x) is intractable, an approximate posterior distribution
of z is introduced, that has a similar general form to the generative conditional
distribution pθ(x|z) and that plays the role of the encoder, i.e., it enables the
inference of the unobserved latent vector z from the corresponding observed
vector x, and ii) the encoder and the decoder are jointly trained, as we will see
in the next subsection.

Let us first specify the encoder. The approximate posterior distribution,
denoted qφ(z|x) ≈ pθ(z|x) is defined by:

qφ(z|x) = N
(
z;µφ(x),diag{σ2

φ(x)}
)

(2.7)

=

L∏
l=1

qφ(zl|x) =

L∏
l=1

N
(
zl;µφ,l(x), σ2

φ,l(x)
)
, (2.8)

where µφ : RF 7→ RL and σφ : RF 7→ RL+ are non-linear functions of x modeled
by a DNN called the encoder network3 and parametrized by a set of weights and
biases denoted φ. The encoder network is illustrated in Fig. 2.2 (left). Again,
for the sake of consistency with the presentation of the other models, we can
redenote:

[µφ(x),σφ(x)] = ez(x), (2.9)

where ez is the non-linear function implemented by the encoder DNN.

2.4 VAE training

For VAE training, the encoder and the decoder are cascaded, as illustrated
in Fig. 2.2, and the sets of parameter θ and φ are jointly estimated from the
training data X. Indeed, it is shown in (Kingma and Welling, 2014) that even
if log pθ(X) is intractable, it is possible to calculate a lower bound of log pθ(X)
that depends on both θ and φ, and maximize this lower bound w.r.t. θ and φ.
This lower bound is called the variational lower bound (VLB) or the evidence
lower bound (ELBO) or the negative variational free energy, and is denoted
L(θ, φ; X).

2This is because the corresponding complete-data log likelihood pθ(X,Z) cannot be integrated
out over the set of latent vectors Z corresponding to X.

3The encoder network is also referred to as the recognition network in the literature.
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It is shown in (Kingma and Welling, 2014) that the VLB is given by:

L(θ, φ; X) = Eqφ(Z|X)

[
log pθ(X,Z)

]
− Eqφ(Z|X)

[
log qφ(Z|X)

]
, (2.10)

which can be reshaped as:

L(θ, φ; X) = Eqφ(Z|X)

[
log pθx(X|Z)

]
−DKL

(
qφ(Z|X)‖ pθz(Z)

)
(2.11)

=

Ntr∑
n=1

Eqφ(zn|xn)

[
log pθx (xn|zn)

]
︸ ︷︷ ︸

Reconstruction accuracy

−
Ntr∑
n=1

DKL

(
qφ(zn|xn) ‖ pθz (zn)

)
︸ ︷︷ ︸

Regularization

,

(2.12)

where DKL(p1 ‖ p2) ≥ 0 denotes the Kullback-Leibler (KL) divergence between
probability distributions p1 and p2. The equivalence between (2.11) and (2.12)
is due to the assumed i.i.d. property of the data vectors. The total VLB is
thus the sum of individual VLBs over the training vectors. The left term in
the right side of (2.11) and (2.12) is a reconstruction term that represents the
average accuracy of the chained encoding-decoding process. The right term
is a regularization term, that enforces the approximate posterior distribution
qφ(z|x) to be close to the prior distribution pθz (z). This term forces z to be a
disentangled data representation, i.e., the z entries tend to be independent and
encode a different characteristic of the data.

For usual distributions, the regularization term has an analytical expression
in function of θ and φ. However, the expectation taken with respect to qφ(zn|xn)
in the reconstruction accuracy term is analytically intractable. Therefore, in

practice, it is approximated using a Monte Carlo estimate with R samples z
(r)
n

independently and identically drawn from qφ(zn|xn) (for each index n):

Eqφ(zn|xn)[log pθ(xn|zn)] ≈ 1

R

R∑
r=1

log pθ(xn|z(r)
n ). (2.13)

In the present paper, we keep the same notation L(θ, φ; X) for the resulting
approximate VLB, i.e. in practice we have:

L(θ, φ; X) =

Ntr∑
n=1

1

R

R∑
r=1

log pθ(xn|z(r)
n ) −

Ntr∑
n=1

DKL

(
qφ(zn|xn) ‖ p(zn)

)
. (2.14)

Maximization of L(θ, φ; X) w.r.t. θ and φ is obtained with a gradient-ascent
algorithm that includes the classical error backpropagation through the network
layers. Usually some version of the Stochastic Gradient Descent (SGD) is used,
i.e., the gradient descent (on the negative VLB) is applied on subsets of training
data called minibatches.4 For L(θ, φ; X) being differentiable w.r.t. θ and φ, one

4Probably because the VAE training combines SGD and variational approximation, the approxi-
mate VLB is sometimes referred to as the Stochastic Gradient Variational Bayes (SGVB) estimator
in the literature (Rezende et al., 2014).

17



has to use i) “differentiable” encoder and decoder neural networks, which can be
assumed for most usual DNN architectures, and ii) explicit formulation of the

samples z
(r)
n as a function of the set of parameters φ. This is obtained with the

so-called reparameterization trick, which consists in reformulating this sampling
as:

z
(r)
n,l = µφ,l(xn) + ε σφ,l(xn) ε ∼ N (0, 1). (2.15)

SGD and update of model parameters θ and φ are thus alternated with the
above sampling using the lastly updated parameters φ. In practice, if we use
sufficiently large minibatches, we can set R = 1. Note that all this optimization
process is now considered as routine within deep learning toolkits such as Keras
and Pytorch.

Because it is at the foundation of the variational approach, we will largely
reuse the generic expression of L(θ, φ; X) given in (2.11) in the following of this
review paper.

2.5 VAE improvements and extensions

Before we move forward dynamical models based on VAE, we briefly review some
improvements and extensions of the “static” VAE that have been proposed in
the literature. Those works aim at improving the VAE regarding either the
decoder or encoder capacities, or the loss function.

The authors of (Higgins et al., 2017) proposed to introduce a weighting fac-
tor, denoted β, in (2.11)–(2.12) to balance the regularization and reconstruction
terms:

L(θ, φ, β; X) = Eqφ(Z|X)

[
log pθx (X|Z)

]
−βDKL

(
qφ(Z|X)‖ pθz (Z)

)
. (2.16)

This enables the user to better control the trade-off between output quality and
orthogonality/disentanglement of the latent coefficients z.

It has been proposed in (Rezende and Mohamed, 2015; Kingma et al., 2016;
Louizos and Welling, 2017; Chen et al., 2017) to augment the flexibility (and
thus the modeling power) of the approximate posterior distribution using so-
called normalizing flows, that is a mapping of the latent variable z from another
variable, possibly via autoregressive modeling. Another manner to improve the
VAE encoder is to use a piecewise constant distribution for the prior distribu-
tion of z, as proposed in (Serban et al., 2016) in the context of text/dialogue
generation. Note that (Chen et al., 2017) considers the case of an autoregressive
conditional density of the form pθx (x|z) =

∏
i pθx (xi|z,xaround[i]) with applica-

tion to 2D-image modeling, where xi is the i-th pixel of the image and xaround[i]

are the surrounding pixels. The autoregressive part is typically implemented
with an RNN (van den Oord et al., 2016b). Ideally, the local statistics of an im-
age (e.g., local texture) should be modeled by the autoregressive part, whereas
the global structural information of the image (e.g., objects) should be encoded
in z. This paper discusses the tendency of the autoregressive part of the model
to capture all the information on the data structure and let the latent variable
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unused. This problem had also been observed and discussed in the context of
language/text modeling (Bowman et al., 2016). A general strategy to counter
this effect, that is controlling the data features encoded by the RNN and the
data features encoded in z, is proposed at the early level of model design (basi-
cally, the local autoregressive window is constrained to be small). This can also
be done with a hierarchical structure of the latent space, possibly combined with
the different levels of image feature maps (Gulrajani et al., 2016; Gregor et al.,
2016) or by introducing in the training procedure an auxiliary loss function that
controls which information is captured by z and what is left to the autoregres-
sive decoder (Lucas and Verbeek, 2018). Since the 2D-image case can be easily
extended to time series of data, this problem is very interesting in our DVAE
review context and we will come back to it in the discussion of Section 14.

The authors of (Siddharth et al., 2017) propose to force the disentanglement
of z and thus improve its interpretability by using a small amount of supervision
during training. This study does not particularly deal with static or dynamical
VAEs, and this weak supervision principle can be applied to both. The authors
of (Bouchacourt et al., 2018) propose a hierarchical “multi-level” VAE with two
latent vectors that are defined at different data scales: One latent vector encodes
a common content for a group of data, and one other latent vector encodes the
style of subgroups of data within a group. Data grouping also involves a certain
amount of supervision during training. Although there is no temporal aspect
in (Bouchacourt et al., 2018), we will see later that the use of different latent
variables to encode different levels of information in the data can be applied to
sequential data characterized by features with different time resolutions.
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Chapter 3

Recurrent Neural Networks
and State Space Models

We have mentioned in the introduction that, basically, DVAEs are made of
combinations of a VAE and temporal models. Still basically, temporal models
rely on recurrent neural networks (RNNs) and/or state space models (SSMs).
We thus rapidly present the RNNs ans SSMs in this section, as a first step on
our way towards more sophisticated temporal models. We provide the minimum
material for a premise to DVAEs. An extended technical overview of RNNs and
SSMs, as well as their applications, is out of the scope of the present paper.

3.1 Recurrent Neural Networks

3.1.1 Principle and definition

RNNs have been and are still extensively used for data sequence modeling and
generation, and sequence-to-sequence mapping. Basically, a RNN is a neural
network that processes ordered vector sequences and that uses a memory of
past input/output data to condition the current output (Sutskever, 2013; Graves
et al., 2013). This is done using some additional vector that recursively encodes
the internal state of the network.

As for notations, we denote by xt1:t2 = {xt}t2t=t1 a sequence of vectors xt
indexed from t1 to t2, with t1 ≤ t2. When t1 > t2, we assume xt1:t2 = ∅.
We present the RNNs in the general framework of non-linear systems, which
transform an input vector sequence u1:T into an output vector sequence x1:T ,
possibly through some internal state vector sequence h1:T . Input, output and
internal state vectors can have arbitrary (different) dimensions. If u1:T is an
“external” input sequence, the network is considered as a “system” as is usual
from the control theory point of view (u1:T being often considered as a command
to the system). If ut = ∅ the RNN is in undriven mode. And importantly, if
ut = xt−1 the RNN is in predictive mode, or sequence generation mode, which
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is a usual mode when we are interested in modeling the evolution of a data
sequence x1:T “alone,” i.e., independently of any external input (in that case,
x1:T can be seen both as an input and an output sequence).

A basic single-layer RNN model is defined by:

ht = dhid(Winut + Wrecht−1 + bhid), (3.1)

xt = dout(Woutht + bout), (3.2)

where Win, Wrec and Wout are weight matrices of appropriate dimensions,
bhid and bout are bias vectors, and dhid and dout are non-linear activation func-
tions. We also need to define the initial internal state vector h0. This model is
extendable to more complex recurrent architectures:

ht = dh(ut,ht−1), (3.3)

xt = dx(ht), (3.4)

where dh and dx denote any arbitrary complex non-linear functions imple-
mented with a deep neural network. We assume that this representation in-
cludes Long Short-Term Memory (LSTM) networks (Hochreiter and Schmidhu-
ber, 1997) and Gated Recurrent Unit (GRU) networks (Cho et al., 2014) that
comprise additional internal variables called gates. For simplicity of presenta-
tion, those additional internal gates are not formalized in (3.3) (3.4). The same
for multi-layer RNNs where several recursive layers are stacked on top of each
other (Graves et al., 2013) (in that case, for the same reason, we do not report
layer index in (3.3) (3.4)). And the same for combinations of multi-layer RNNs
and LSTMs, i.e., multi-layer LSTM networks. In summary, in all the following,
we assume that (3.3) (3.4) is a “generic” or “high-level” representation of an
RNN of arbitrary complexity.

Notation remark: Although it is a bit abusive, to clarify the presentation and
the links between the different models, we use the same generic notation dx for
the generating function in (2.5) and (3.4), and we will do that all throughout
the paper (and the same for dh and for dz to come).

So far, the above RNNs are totally deterministic: Given u1:T and h0, x1:T

is totally determined. Such networks are trained by optimizing a deterministic
criterion, e.g., the mean squared error (MSE) between target output sequences
from a training dataset and corresponding actual output sequences from the
network. Note that the training set of i.i.d. vectors used for the VAE training is
here replaced with a training set of sequences of vectors, and consecutive vectors
within a training sequence are generally correlated, which is the point of using
a dynamical model.

3.1.2 Generative Recurrent Neural Networks

Deterministic RNNs can easily be turned into generative RNNs (GRNNs) by
adding stochasticity at the output level: We just have to define a probabilistic
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observation model and replace the output sequence of data with an output se-
quence of corresponding distribution parameters, just like for the VAE decoder:

ht = dh(ut,ht−1), (3.5)

[µθx (ht),σθx (ht)] = dx(ht), (3.6)

pθx (xt|ht) = N
(
xt;µθx (ht),diag{σ2

θx (ht)}
)
. (3.7)

Eq. (3.5) is the same recursive internal state model as (3.3). Eq. (3.6) and
(3.7) compose the observation model. For the latter, we here use the Gaussian
distribution for its generality and for convenience of illustration, though any
distribution can be used, just as for the VAE decoder. Again, one may choose
a distribution that is more appropriate to the nature of the data. For exemple,
using mixture distributions was proposed in (Graves, 2013).

The complete set of model parameters θ here includes θh and θx , the pa-
rameters of the networks implementing dh and dx , respectively. We can remark
that because the output of dx in (3.6) is now two vectors of pdf parameters
instead of a data vector in (3.4), its size is twice the size of the deterministic
RNN. When the internal state vector ht is of (much) lower dimension than the
output vector xt, the GRNN observation model becomes very similar to the
VAE decoder, except that, again, ht has a deterministic evolution through time
whereas the latent state z of the VAE is stochastic and i.i.d., which is of course
a fundamental difference.

It can also be noted that even if the generation of xt is now stochastic, the
internal state evolution is still totally deterministic. Let us redenote ht as a
function ht = ht(u1:t) to make the deterministic relation between u1:t and ht
explicit (for every time index t).1 We thus have pθx (xt|ht) = pθx (xt|ht(u1:t)).
In predictive mode, we have: pθx (xt|ht) = pθx (xt|ht(x0:t−1)).2 Such stochastic
version of the RNN can be trained with a statistical criterion, e.g., maximum
likelihood: As for the VAE training, we search for the maximization of the
observed data log-likelihood w.r.t. θ over a set of training sequences. For one
sequence, with the conditional independence of successive data vectors, the data
log-likelihood is given by:

log pθx (x1:T |u1:T ) =

T∑
t=1

log pθx
(
xt|ht(u1:t)

)
. (3.8)

3.2 State Space Models

3.2.1 Principle and definition

State Space Models (SSMs) are a rich family of models that are widely used to
model dynamical systems (in statistical signal processing, time series analysis,

1ht(u1:t) also depends on the initial internal state vector h0, but we omit this term as an
argument of the function for concision.

2Here, the first “input” x0 has to be set arbitrarily, just like h0. Alternately, one can directly
start the generation process from an arbitrary internal state vector h1.
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control theory, etc.) Here, we focus on discrete-time continuous-valued SSMs of
the form:

[µθz (zt−1,ut),σθz (zt−1,ut)] = dz(zt−1,ut), (3.9)

pθz (zt|zt−1,ut) = N
(
zt;µθz (zt−1,ut),diag{σ2

θz (zt−1,ut)}
)
,

(3.10)

[µθx (zt),σθx (zt)] = dx(zt), (3.11)

pθx (xt|zt) = N
(
xt;µθx (zt),diag{σ2

θx (zt)}
)
, (3.12)

where dz and dx are functions of arbitrary complexity,3 each one being param-
eterized by a set of parameters denoted θz and θx , respectively. As for the
complete generative model, we thus have θ = θx ∪θz , and we keep this notation
in all the following of the paper. The observation model (3.11)–(3.12) is very
similar to the GRNN observation model (3.6)–(3.7). Here, zt is a stochastic in-
ternal state vector. Its distribution, known as the state model or the dynamical
model, is given by (3.9)–(3.10). We can see it follows an order-1 Markov model,
i.e., a temporal dependency is introduced where zt depends on the previous
state zt−1 and corresponding input ut, through the function dz . The use of
the Gaussian distribution in (3.10) and (3.12) is a usual convenient choice.4 In
short, the above SSM is a GRNN in which the deterministic internal state ht of
the (G)RNN has been replaced with a stochastic internal state zt, as illustrated
in Fig. 3.1.

Notation remark: In the control theory literature, the input corresponding to
the generation of zt is often denoted ut−1, or equivalently, ut is used to generate
the next state zt+1. This notation is arbitrary. In the present paper, we prefer
to denote ut the input used to generate zt, which is in turn used to generate xt,
to be better consistent through all the presented models.

As for the complete sequence, given the dependencies represented in Fig. 3.1,
the joint distribution of all variables writes:

pθ(x1:T , z1:T ,u1:T ) =

T∏
t=1

pθx (xt|zt)pθz (zt|zt−1,ut)p(ut), (3.13)

from which we can deduce:

pθx (x1:T |z1:T ) =

T∏
t=1

pθx (xt|zt), (3.14)

and:

pθz (z1:T |u1:T ) =

T∏
t=1

pθz (zt|zt−1,ut). (3.15)

3Here, dz and dx can be linear or non-linear. We will comment on those different cases in the
following.

4More generally, those distributions are within the exponential family so that either exact or
approximate inference algorithms can be applied, depending on the nature of dz and dx .
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Figure 3.1: GRNN (left) vs. SSM (right): Both models have a strikingly similar
structure, though the internal state of the GRNN is deterministic (represented
with a diamond) whereas the internal state of the SSM is stochastic (represented
with a circle).

Note that given the state sequence z1:T , the observation vectors at different time
frames are mutually independent. The prior distribution of ut also factorizes
across time frames, but this is of limited interest here. Note also that, to be
complete, we should specify more carefully the model “initialisation”: At t = 1
we need to define z0 which can be set to an arbitrary deterministic value, or
defined via a prior distribution pθz (z0) (that then must be added in the right-
hand-side of (3.13) and (3.15)), or we can set z0 = ∅, in which case the first
term of the state model in those equations is pθz (z1|u1).

3.2.2 Kalman filters

Some classical SSMs have been (successfully) used for decades for a wide set of
applications. For example, when dx and dz are linear functions of the form:

µθz (zt−1,ut) = Atzt−1 + Btut + mt, σ2
θz (zt−1,ut) = Λt, (3.16)

µθx (zt) = Ctzt + nt, σ2
θx (zt) = Σt, (3.17)

where At, Bt, mt, Λt, Ct, nt, and Σt are matrices and vectors of appropriate
size, the whole SMM turns into a Linear-Gaussian Linear Dynamical System
(LG-LDS). In that case, the inference, that is the equations for optimal state
vector sequence estimation from observed data, has a very popular closed-form
inference solution known as the Kalman Filter (Moreno and Pigazo, 2009).5

We do not present the equations of the Kalman filter here for concision, let us
just mention that the inference is a linear form of the observations, and the
parameters of this linear form are obtained from the model parameters with
basic matrix/vector operations.

5The Kalman filter is the solution to inference using past and present observations (outputs and
inputs). When the complete sequence of observations are used, the solution is the Kalman smoother,
also obtainable in closed-form.
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Non-linear Dynamical Systems (NDS), sometimes abusively referred to as
Non-linear Kalman Filters, have also been largely studied, well before the deep
learning era. Principled extensions to the Kalman Filter designed to deal with
the non-linearities have been proposed, e.g., the Extended Kalman Filter (EKF)
and the Unscented Kalman Filter (EKF) (Wan and Van Der Merwe, 2000;
Daum, 2005). A review of linear and non-linear Kalman filters is out of the
scope of the present paper, to keep it focused on Dynamical VAEs.
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Chapter 4

Definition of Dynamical
VAEs

In this section, we describe a general methodology for defining and training
Dynamical VAEs. Our goal is to encompass different models proposed in the
literature, that we will describe in more details later on. These models can be
seen as particular instances of this general definition, given simplifying assump-
tions. Hopefully, this section will prepare the reader to understand well the
commonalities and differences between all the models that we will review, and
may motivate future developments.

We first define a DVAE in terms of generative model, then we present the
general lines of inference and training in the DVAE framework.

4.1 Generative model

As already mentioned, DVAEs consider a sequence of observed random vectors
x1:T = {xt ∈ RF }Tt=1 and a sequence a latent random vectors z1:T = {zt ∈
RL}Tt=1. As opposed to the “static” VAE, and similarly to SSMs, all those
data sequences are assumed to be temporally correlated and can have more or
less complex (cross-)dependencies across time. Defining the generative model
consists in specifying the joint distribution of the observed and latent sequential
data, through the pdfs pθ(x1:T , z1:T ), which parameters are provided by DNNs,
and which depend on a set of parameters θ.

When the model is working in the so-called driven mode, one additionally
considers an input sequence of observed random vectors u1:T = {ut ∈ RU}Tt=1,
in which case x1:T is seen as the output sequence. In that case, to define the full
generative model, we need to specify the joint distribution pθ(x1:T , z1:T ,u1:T ).
However, in practice we are usually only interested in modeling the generative
process of x1:T and z1:T given the input sequence u1:T . Loosely speaking, the
input sequence is assumed deterministic while x1:T and z1:T are stochastic.
Therefore, as commonly done in the DVAE literature (Krishnan et al., 2015;
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Fraccaro et al., 2016, 2017) we will only focus on modeling the distribution
pθ(x1:T , z1:T |u1:T ).

In the following, we will first omit to denote the parameters θ when defining
the general structure of dependencies in the generative model. We will come
back to this point later, when introducing how RNNs are used to parametrize
the model. Also, in a general manner, we will consider the model in driven
mode, i.e., with u1:T as input, since it is more general that in undriven mode,
i.e., with no “external” input. The undriven mode equations can obtained from
the driven mode equations by simply removing u1:T .

4.1.1 Structure of dependencies in the generative model

In DVAEs, the joint distribution of the sequences of observed and latent vectors
is usually defined by using the chain rule, i.e., it is written as a product of condi-
tional distributions over the vectors at different time indices. When writing the
chain rule, different orderings of the random vectors can be arbitrarily chosen.
This is an important point because the choice of the ordering when writing the
chain rule defines how we sample from the generative model. Let us consider
the following very simple example:

p(x1,x2, z1, z2) = p(x2|x1, z1, z2)p(z2|x1, z1)p(x1|z1)p(z1) (4.1)

= p(x2|x1, z1, z2)p(x1|z1, z2)p(z2|z1)p(z1). (4.2)

In (4.1), the sampling is causal because we alternate between sampling zt and xt
from t = 1 to 2. On the contrary, in (4.2) the sampling is not causal because we
first have to sample the complete sequence of latent vectors z1:2 before sampling
x1, then x2. This principle generalizes to much longer sequences of course.

In the DVAE literature, causal modeling is the most popular approach.
In the following, we will therefore focus on causal modeling, but the general
methodology is very similar for non-causal modeling. Actually, to the best of
our knowledge, only one non-causal model was proposed in the literature: The
RVAE model of (Leglaive et al., 2020). In fact, both causal and non-causal
versions of the RVAE were proposed in this paper, and both versions will be
presented in Section 10.

In (causal) DVAEs, the joint distribution of the latent and observed se-
quences is first factorized according to the time indices using the chain rule:

p(x1:T , z1:T |u1:T ) =

T∏
t=1

p(xt, zt|x1:t−1, z1:t−1,u1:t). (4.3)

The only assumption made in (4.3) is a causal dependence of xt and zt on the
input sequence u1:T . Then, at each time index p(xt, zt|x1:t−1, z1:t−1,u1:t) is
again factorized using the chain rule, so that:

p(x1:T , z1:T |u1:T ) =

T∏
t=1

p(xt|x1:t−1, z1:t,u1:t)p(zt|x1:t−1, z1:t−1,u1:t). (4.4)
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This equation is a generalization of (4.1), and, again, it exhibits the alternate
sampling of zt and xt. Note that, similarly to our remark in Section 3.2.1,
for t = 1 the first terms of the product in (4.3) and (4.4) are p(x1, z1|u1) and
p(x1|z1,u1)p(z1|u1), respectively. This is consistent with our notation choice
that x1:0 = z1:0 = ∅. Alternately, we could define z0 as the initial state vector
and consider p(z0), p(z1|z0,u1) and so on in those equations. In the following
of this paper, for each detailed model, we will give the joint distribution in a
general form of a product over frames from t = 1 to T and we do not detail the
model “initialisation” for concision.

As will be seen later in details, the different models proposed in the literature
make different conditional independence assumptions in order to simplify the
dependencies in the conditional distributions of (4.4). For instance, the SSM
family presented in Section 3.2 is based on the following conditional indepen-
dence assumptions:

p(xt|x1:t−1, z1:t,u1:t) = p(xt|zt), (4.5)

p(zt|x1:t−1, z1:t−1,u1:t) = p(zt|zt−1,ut). (4.6)

We have already introduced the concept of driven mode. In the causal
context, we say that a DVAE is in driven mode if u1:t is used to generate either
x1:t, z1:t, or both. We say that a DVAE is in predictive mode if x1:t−1, or part of
this sequence, typically xt−1, is used to generate either xt or zt, or both. This
corresponds to feedback or closed-loop control in control theory. In its most
general form (4.4), a DVAE is both in driven and predictive modes, however it
can be in only one of the two modes (e.g., the above SSM is in driven mode but
not in predictive mode), or even in none of them. Note that in the literature,
we did not encounter any DVAE in both modes at the same time. Moreover,
there are models in driven and non-predictive mode that are converted to non-
driven and predictive mode by replacing the control input ut with the previous
generated output xt−1, see (Fraccaro et al., 2016). It is important to note
that the behavior of a model may be quite different under the various modes.
This is consistent with the concept of using a model in open loop or in closed
loop in the control theory. In a general manner, we remark that the principle
of those different modes is poorly discussed (if discussed at all) in the DVAE
literature, and we think it is interesting to clarify it at an early stage of the
DVAE presentation.

4.1.2 Parametrization with (R)NNs

The factorisation in (4.4) is a general umbrella for all (causal) DVAEs. As
discussed above, each particular DVAE model will make different conditional
independence assumptions that will simplify in various ways the general factori-
sation. Once the conditional assumptions are made, one can easily determine
if there is a need to accumulate past information (e.g., zt or xt depends on the
past observations x1:t) or if a first-order Markovian relationship holds (e.g., zt
and xt depend at most on zt−1 and xt−1). Usually, the implementation of the
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former is done by means of recurrent neural networks, while feed-forward deep
neural networks can be used to implement first-order Markovian dependency.
Moreover, once the conditional assumptions are made, one may implement the
remaining dependencies in different ways. Therefore, the final family of dis-
tributions depends not only on the conditional independence assumptions, but
also on the networks that are used to implement the remaining dependencies.
Let us showcase this with one concrete example.

Let us assume the following conditional independence assumptions:

p(zt|x1:t−1, z1:t−1,u1:t) = p(zt|x1:t−1,ut), (4.7)

p(xt|x1:t−1, z1:t,u1:t) = p(xt|x1:t−1, zt); (4.8)

where we assume that the generation of both xt and zt depend on x1:t−1. In
addition, the generation of xt also depends on zt and the generation of zt also
depends on ut. Naturally, in order to accumulate the information of all past
outputs x1:t−1, one can use a recurrent neural network. In practice, the past
information is accumulated in the internal state variable of the RNN, namely ht,
computed recurrently at every frame t. Among the many possible implementa-
tions, we consider two in this example: In the first implementation, illustrated
in Figure 4.1 (middle), one single RNN internal state variable ht is used to
generate both xt and zt, while in the second implementation, illustrated in Fig-
ure 4.1 (right), two different internal state variables, ht and kt, are used to
generate xt and zt separately.

Formally, assuming all distributions are Gaussian, the first implementation
can be expressed as:

ht = dh(xt−1,ht−1; θh), (4.9)

[µθz (x1:t−1,ut),σθz (x1:t−1,ut)] = dz(ht,ut; θhz), (4.10)

pθz (zt|x1:t−1,ut) = N
(
zt;µθz (x1:t−1,ut),diag{σ2

θz (x1:t−1,ut)}
)
, (4.11)

[µθx (x1:t−1, zt),σθx (x1:t−1, zt)] = dx(ht, zt; θhx), (4.12)

pθx (xt|x1:t−1, zt) = N
(
xt;µθx (x1:t−1, zt),diag{σ2

θx (x1:t−1, zt)}
)
, (4.13)

where dh , dz and dx are non-linear functions implemented with DNNs. It is now
clear that the parameters of the conditional distribution of zt are θz = θh ∪θhz ,
while those of the conditional distribution of xt are θx = θh ∪ θhx . Obviously
the two conditional distributions share the recurrent parameters θh . Regarding
the second implementation, the generative process writes:

ht = dh(xt−1,ht−1; θh), (4.14)

[µθz (x1:t−1,ut),σθz (x1:t−1,ut)] = dz(ht,ut; θhz), (4.15)

pθz (zt|x1:t−1,ut) = N
(
zt;µθz (x1:t−1,ut),diag{σ2

θz (x1:t−1,ut)}
)
, (4.16)

kt = dk(xt−1,kt−1; θk), (4.17)

[µθx (x1:t−1, zt),σθx (x1:t−1, zt)] = dx(kt, zt; θkx), (4.18)

pθx (xt|x1:t−1, zt) = N
(
xt;µθx (x1:t−1, zt),diag{σ2

θx (x1:t−1, zt)}
)
. (4.19)
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Figure 4.1: Two different implementations of a given factorisation. The proba-
bilistic graphical model (left) shows the dependencies between random variables
and correspond to the factorisation in (4.7)-(4.8). Two possible implementa-
tions based on RNNs are shown: Sharing the internal state variables (middle)
or with two different internal state variables (right). We refer to the compact
representation (left) and to developed representations (middle and right). This
terminology holds for both the graphical representations and the formulation of
the model.

We have an additional DNN-based non-linear function dk , and analogously it is
clear that the parameters of the conditional distribution of zt are θz = θh ∪θhz ,
while those of the conditional distribution of xt are θx = θk ∪ θkx . In that case,
the two conditional distributions do not share any parameters.1

In the equations above, the operators dh , dk , dx and dz are non-linear
mappings parametrized by neural networks of arbitrary architecture. How to
choose and design these architectures is out of the scope of this manuscript since
it depends significantly on the targeted application. To fix ideas, in the present
example dh and dk are RNNs, and dx and dz are feed-forward DNNs. The
current manuscript will not discuss how to select the hyper-parameters of those
networks such as the number of layers, or number of units per layer.

A crucial remark is that equations (4.11) and (4.16) are exactly the same,
meaning that the conditional distributions of zt are the same for both models.
The same remark holds for (4.13) and (4.19) defining the conditional distribu-
tion of xt. However, the computations done to obtain the parameters θz and
θx are different depending on the model. It becomes clear now why we make a
distinction between the compact and the developed forms. We call the compact
form of a DVAE model or its graphical representation when only random vari-
ables appear, e.g., (4.11) and (4.13), and Figure 4.1 (left). We call the developed
form of a DVAE or its graphical representation when both random and deter-

1To ease the notation, from now on, we will denote by θz and θx the parameters of
p(zt|x1:t−1, z1:t−1,u1:t) and p(xt|x1:t−1, z1:t,u1:t) in (4.4), respectively, independently of whether
or not they share some parameters. We will also use θ to denote θz ∪ θx .
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ministic variables appear, e.g., (4.9)-(4.13), (4.14)-(4.19) and Fig. 4.1 (middle)
and (right). Each compact form may have different developed forms correspond-
ing to different implementations. The distinction between the compact and de-
veloped forms is important, since the optimisation happens on the parameters
of the developed form, which is only a subgroup of all the possible models sat-
isfying the compact form. It is thus important to present the developed form
of a model. However, the temporal dependencies of order higher than one are
not directly visible in the developed graphical form. Therefore, when reviewing
in details DVAE models in the following of the paper, we will systematically
present both the compact and the developed graphical representations.

4.2 Inference model

In the present DVAE context, the posterior distribution of the state sequence
z1:T is pθ(z1:T |x1:T ,u1:T ) (in driven mode, or pθ(z1:T |x1:T ) in undriven mode).
As for the standard VAE, this posterior distribution is intractable due to non-
linearities in the generative model. In fact, we could say that having temporal
dependencies only makes things even more complicated. Therefore, we also need
to define an inference model qφ(z1:T |x1:T ,u1:T ), which is an approximation of
the intractable posterior distribution pθ(z1:T |x1:T ,u1:T ). And as for the stan-
dard VAE, this model is required not only for performing inference, that is here
estimating the latent sequence z1:T from the observed sequences x1:T and u1:T ,
but also for estimating the parameters of the generative model, as will be seen in
the following section. And as for the standard VAE again, the inference model
is also using DNNs for generating its parameters.

4.2.1 Exploiting D-separation

In a Bayesian network, and in a DVAE in particular, even though the exact for-
mulation of the posterior distribution is often intractable, there exist a general
methodology to write its general form, i.e., to specify the dependencies be-
tween the variables of a generative model at inference time. This methodology
is based on the so-called D-separation property of Bayesian networks (Geiger
et al., 1990), (Bishop, 2006, Chapter 8): Briefly stated, some of the conditioning
variables in the expression of the posterior distribution of a given variable can
vanish depending on if the nodes in between those conditioning variables and
the given variable represent variables that are observed or unobserved and de-
pending on the direction of the dependencies (i.e., the direction of the arrows of
the graphical representation), see (Geiger et al., 1990; Bishop, 2006) for details.
Note that this methodology is very helpful even for more conventional (i.e., non-
deep) models, because the algebraic calculation of a posterior distribution from
a joint distribution is not always easy.

In the present variational framework, we can exploit the above methodology
to design the approximate posterior distribution qφ: It is reasonable to assume
that a good candidate for qφ would have the same structure as the true poste-
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rior distribution regarding variable dependencies. In other words, if we cannot
derive the true posterior distribution, let us at least use an approximation that
exhibits the same dependencies between variables, so that it is fed with the same
information. Yet, it is quite surprising to see that a significant proportion of the
DVAE papers we review, especially the early papers, do not refer to this method-
ology and do not consider looking at the form of the true posterior distribution
when designing the approximate distribution. In the early studies in particular,
the formulation of qφ is chosen quite arbitrarily and with no reference to the
structure of the true posterior distribution. In more recent papers however, the
structure of qφ generally follows the one of the true posterior distribution. We
will come back on this point on a case by case basis when presenting the DVAE
models in detail.

4.2.2 Non-causal and causal inference

Being aware of this problem, we can now go back to the general form of the true
posterior distribution, and factorize it as follows, applying again the chain rule
the same way we did for the generative model:

pθ(z1:T |x1:T ,u1:T ) =

T∏
t=1

pθz (zt|z1:t−1,x1:T ,u1:T ). (4.20)

For the most general generative model defined in (4.4), the dependencies in each
individual conditional distribution pθz (zt|z1:t−1,x1:T ,u1:T ) can not be simpli-
fied. In other words, zt does depend on the past latent vectors z1:t−1 and on
the complete sequences of observed vectors x1:T and u1:T (past, current and
future time steps). The “true” inference is thus a non-causal process, even if
generation is causal. As discussed above, the inference model qφ should here
have the same most general structure:

qφ(z1:T |x1:T ,u1:T ) =

T∏
t=1

qφ(zt|z1:t−1,x1:T ,u1:T ). (4.21)

As for the generative model, each individual conditional distribution qφ(zt|z1:t−1,x1:T ,u1:T )
should accumulate information from past latent variables and past observations,
but it should also accumulate information from present and future observa-
tions. Typically, this process is implemented with some sort of bidirectional
recurrent network. However, depending on the conditional independence as-
sumptions made when defining the generative model, the posterior dependen-
cies in pθ(zt|z1:t−1,x1:T ,u1:T ) may be simplified, using the above-mentioned
D-separation property of Bayesian networks, and thus the posterior dependen-
cies in qφ(zt|z1:t−1,x1:T ,u1:T ) may be simplified in the same manner. Of course,
it is always possible to use an approximate posterior qφ which does not follow
the structure of the true posterior. In particular it makes sense to use an even
more simplified version if one wants to significantly decrease the computational
cost or force the inference to be a causal process (e.g., for online or incremental

32



data processing). But of course this will generally be at the risk of decreasing
the performance of inference. Again, we will come back to those points when
reviewing the different DVAE models proposed in the literature.

4.2.3 Sharing variables and parameters at generation and
inference

Interestingly, we can note a similarity between the (most general causal) gen-
erative distribution pθz (zt|x1:t−1, z1:t−1,u1:t) and the corresponding inference
model qφ(zt|z1:t−1,x1:T ,u1:T ), in terms of random variable dependencies. For
instance, the general form of the dependency of zt on past latent vectors is the
same at inference and generation: In both cases, zt depends on the complete
past sequence z1:t−1. Implementing this recurrence at inference and at gener-
ation may be made with a single unique RNN or with two different RNNs, in
the line of what we discussed in Section 4.1.2. The same principle applies for
u1:t and x1:t, which are both used at generation and inference. Depending on
which variables we consider, it can make sense to use the same RNN at genera-
tion and inference, meaning that the deterministic link between realisations of
random variables is the same at generation and at inference. If that is the case,
the decoder and encoder share some network modules and thus θ and φ share
some parameters. We remark that this is not the case in standard VAE. In the
following of this paper, we will systematically use ht to denote the internal state
of the decoder, and we will use gt to denote the internal state of the encoder if
it is different from the internal state of the decoder. Otherwise, we will use ht
for the encoder as well.

4.3 Variational lower bound and training of DVAEs

As for the standard VAE, training a DVAE is based on maximization of the
variational lower bound (VLB). In the case of DVAEs, the VLB initially defined
in (2.10) naturally extends to data sequences as:

L(θ, φ; x1:T ,u1:T ) = Eqφ(z1:T |x1:T ,u1:T )

[
ln pθ(x1:T , z1:T |u1:T )

]
− Eqφ(z1:T |x1:T ,u1:T )

[
ln qφ(z1:T |x1:T ,u1:T )

]
. (4.22)

With the factorization in (4.21), the expectation in (4.22) can be expressed as
a cascade of expectations, taken with respect to conditional distributions over
individual latent vectors at different time indices:

Eqφ(z1:T |x1:T ,u1:T )[ψ(z1:T )] =Eqφ(z1|x1:T ,u1:T )

[
Eqφ(z2|z1,x1:T ,u1:T )

[
. . .

Eqφ(zT |z1:T−1,x1:T ,u1:T )

[
ψ(z1:T )

]
. . .
]]
, (4.23)
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where ψ(z1:T ) denotes any function of z1:T . Then by injecting (4.4) and (4.21)
into (4.22), and using the above cascade, we can develop the VLB as follows:

L(θ, φ; x1:T ,u1:T ) = Eqφ(z1:T |x1:T ,u1:T )

[
ln pθ(x1:T , z1:T |u1:T )

− ln qφ(z1:T |x1:T ,u1:T )
]

=

T∑
t=1

Eqφ(z1:t|x1:T ,u1:T )

[
ln pθx (xt|x1:t−1, z1:t,u1:t)

]
−

T∑
t=1

Eqφ(z1:t−1|x1:T ,u1:T ) [DKL (qφ(zt|z1:t−1,x1:T ,u1:T ) ‖

pθz (zt|x1:t−1, z1:t−1,u1:t)
)]
. (4.24)

To our knowledge, this is the first time the VLB is presented in this most general
form that is valid for the large class of (causal) DVAE models.

As for standard VAEs, the VLB contains a reconstruction accuracy term
and a regularization term. However, in contrast to standard VAEs, not only
the reconstruction accuracy term but also the regularization one require com-
puting an expectation, which is analytically intractable due to non-linearities.
Therefore, in DVAEs we also need to compute Monte Carlo approximations
(i.e., empirical averages) of intractable expectations, using samples drawn from
qφ(z1:τ |x1:T ,u1:T ), where τ ∈ {1, ..., T} is an arbitrary index . Using the chain
rule in (4.21), we sample from the joint distribution qφ(z1:τ |x1:T ,u1:T ) by sam-
pling recursively from qφ(zt|z1:t−1,x1:T ,u1:T ), starting from t = 1 up to t = τ .
Sampling each random vector zt at a given time instant is straightforward, as
qφ(zt|z1:t−1,x1:T ,u1:T ) is analytically specified by the chosen inference model
(e.g., Gaussian with mean and variance provided by an RNN). We have to use
the same reparametrization trick as for standard VAEs, so that the sampling-
based VLB estimator remains differentiable with respect to φ. The VLB can
then be optimized using gradient-ascent-based algorithms. Note that the VLB is
maximized with respect to both φ and θ = θz ∪θx (and remind that for DVAEs,
φ and θ can share parameters, which is different from the “static” VAE, but
perfectly alright for the optimization, technically speaking). Finally, note that
the VLB is here defined for one single sequence from a training dataset, but the
common practice consists in averaging the VLB over a mini-batch of multiple
training sequences, before updating the model parameters with gradient ascent.

4.4 DVAE summary

Dynamical VAEs are constructed with various stochastic relationships between
the control variables u1:T , the latent variables z1:T and the observed variables
x1:T . We recall that a random variable a is called a parent of another random
variable b when the realisation of a is used to compute the parameters of the
distribution of b. The computation of these can be a linear or a non-linear
mapping of the realisation of a, and can include or not the realisation of other
random variables. A DVAE model must contain two kinds of relationships:
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• Decoding link: zt is always a parent of xt. Graphically, there is always
an arrow from zt to xt in the compact graphical representation. This is a
fundamental characteristic inherited from the standard VAE.

• Temporal link: At least one element in z1:t−1 or in x1:t−1 is parent to
either zt or xt. One of the simplest forms of temporal link, that is zt−1 is
a parent of zt, is a fundamental characteristic of first-order SSMs.

In a way, the “minimal DVAE” is the straightforward combination of a first-
order SSM and a VAE, i.e., the DKF/DMM model that we will detail in Sec-
tion 5. Other DVAEs include additional temporal links. Moreover, temporal
links such as “zt−1 is a parent of xt” can be seen as additional decoding links
as well, in the sense that xt is generated from zt and zt−1. As for temporal
links, in the papers that we detail in this overview, zt and/or xt depend either
on zt−1 and/or xt−1, or on z1:t−1 and/or x1:t−1. In other words, the order of
temporal dependencies is either 1 (implemented with a basic feed-forward neu-
ral network such as a Multi-Layer Perceptron) or infinity (implemented with an
RNN). However one could in principle use N -order temporal dependencies with
1 < N < ∞, relying for instance on CNNs with finite-length receptive fields.
In particular, temporal convolutional networks (TCNs) (Lea et al., 2016) which
are based on causal and dilated convolutions have shown to be competitive
with RNNs on several sequence modeling tasks, including generative modeling
(Aksan and Hilliges, 2019).

Finally, as discussed before, a DVAE can be in driven mode, in predictive
mode, in both or in none of these modes. This is also modeled by parenthood
relationships that may or may not exist:

• Driving link: A DVAE is said to be in driven mode if ut is a parent of
either zt or xt, or both.

• Predictive link: A DVAE is said to be in predictive mode if x1:t−1, or
part of this sequence, is a parent of either zt or xt, or both.
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Chapter 5

Deep Kalman Filters (DKF)

Continuing from the previous section, we start our DVAE tour with the com-
bination of SSMs with neural networks. Such combination is not recent, see
e.g., (Haykin, 2004; Raiko and Tornio, 2009), but it has been recently investi-
gated under the VAE angle in two papers by the same authors (Krishnan et al.,
2015, 2017). The resulting deep SSM is referred to as a Deep Kalman Filter
(DKF) in (Krishnan et al., 2015) or a Deep Markov Model (DMM) in (Krish-
nan et al., 2017).1 Therefore, those papers do not provide a new concept in
terms of models, but they provide a solution to the joint problem of inference
and model parameter estimation in the VAE methodological framework. To our
knowledge, this results is the first example of unsupervised training of a deep
SSM by chaining an approximate inference model with a generative model and
using the VLB maximization methodology. This training leads to the unsuper-
vised discovery of the latent space that encodes the temporal dynamics of the
data. The VAE methodology enables to circumvent the difficulties encountered
in previous approaches (Haykin, 2004; Raiko and Tornio, 2009) concerning the
computational complexity and practicability of model parameter estimation,
allowing in particular to go directly from single-layer neural networks to DNNs.

From now on, and for all detailed DVAE models in the following of this
review paper, we first present the generative equations, then we present the
inference model (and we discuss its choice by referring to the structure of the
true posterior distribution corresponding to the generative model), and then we
present the detailed form of the VLB used for model training (together with
clues about the optimization algorithm).

1The same generative model is considered in both papers, but as we will detail later, the second
paper proposes notable improvements regarding the inference model. On their way the authors go
from DKF to DMM, maybe because the second denomination appears more general. In the present
review we keep the denomination DKF.
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5.1 Generative model

We have already seen the generative equations of the DKF, since they are the
same as (3.9)–(3.12) with the specificity that dz and dx are here DNNs.2 In
(Krishnan et al., 2015), those DNNs are not much specified, we can assume
that basic feed-forward neural networks / Multi-Layer Perceptrons (MLPs) are
used. In (Krishnan et al., 2017), dx is implemented with a two-layer MLP, and a
slightly more refined model is used for dz : A gated linear combination of a linear
model and an MLP for the mean parameter, where the gate is itself provided
by an MLP, and the chaining of MLP, ReLU activation and Softmax activation
for the variance parameter (see Section 13.1.1). According to the authors, this
is to let “the model have the flexibility to choose a linear transition for some
dimensions while having a non-linear transition for the others.”

Even if we are still at an early point of our presentation of the different
DVAE models, we can make a first series of remarks to clarify the links between
the models we have seen so far:

• The stochastic state zt of the SSM is very similar in spirit to the latent state
of the VAE. In the present DKF case where dx is implemented with a DNN,
if zt is of reduced dimension compared to xt, the DKF observation model is
identical to the VAE decoder.

• Consequently, a DKF can be viewed as a VAE decoder with a temporal
(Markovian) model on the latent variable z.

• A (deep) SSM can also be viewed as a “fully stochastic” version of a (deep)
RNN, where stochasticity is introduced at both the observation model level
(like a GRNN) and the internal state level. As mentioned before, in a SSM
the deterministic internal state ht of the (G)RNN is simply replaced with a
stochastic state zt.

• In summary: DKF = Deep SSM = “Markovian” VAE decoder = “Fully
stochastic” RNN. The Graphical model of the DKF is given by the right-
hand schema in Fig. 3.1 (which does not make the DNNs apparent).

5.2 Inference model

Following the general line of Section 4.2, we first look for the structure of the
SSM/DKF posterior distribution pθ(z1:T |x1:T ,u1:T ). Let us first remind that
applying the chain rule enables us to rewrite this distribution as:

pθ(z1:T |x1:T ,u1:T ) =

T∏
t=1

pθ(zt|z1:t−1,x1:T ,u1:T ). (5.1)

2In fact, a Bernouilli distribution was considered for xt in (Krishnan et al., 2015, 2017), but
we have already mentioned that different pdfs can be considered for pθx (xt|zt) depending on the
data, without affecting the fundamental issues of this review. Hence we consider here a Gaussian
distribution for the purpose of better comparison with the other models.
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Then one can use the D-separation principle to simplify each term of the prod-
uct. From the structure represented in Fig. 3.1 (right), we can see that the
zt−1 node “blocks” all the information coming from the past and flowing to zt
(that is z1:t−2, x1:t−1 and u1:t−1). Another way to express things is to say that
zt−1 has accumulated this past information, or is a summary of it. We thus
have pθ(zt|z1:t−1,x1:T ,u1:T ) = pθ(zt|zt−1,xt:T ,ut:T ), and thus (with z0 being
arbitrarily set):

pθ(z1:T |x1:T ,u1:T ) =

T∏
t=1

pθ(zt|zt−1,xt:T ,ut:T ). (5.2)

At each time t, the posterior distribution of zt depends on the previous latent
state zt−1 and on present and future observations xt:T and inputs ut:T (it is
thus a first-order Markovian causal process on zt combined with an anti-causal
process on xt and ut).

In (Krishnan et al., 2015), the authors point out this structure and the
fact that we can/should inspire from it to design the approximate posterior qφ.
However, a bit strangely, they propose the four following different models:

• an instantaneous model: qφ(zt|xt,ut) parameterized by an MLP;

• a model with local past and future context: qφ(zt|xt−1:t+1,ut−1:t+1) param-
eterized by an MLP;

• a model with the complete past context: qφ(zt|x1:t,u1:t) parameterized by an
RNN;

• a model with the whole sequence: qφ(zt|x1:T ,u1:T ) parameterized by a bidi-
rectionnal RNN.

We do not detail those implementations of qφ here, since we will give other
detailed examples in the following. We may wonder why is zt−1 is not present
in the conditional variables of the approximate posterior, but this may just be
an oversight from the authors.3 The point is that, despite the authors pointed
out the dependency of the true posterior on present and future observations and
inputs, they do not propose a corresponding approximate model.

Notation remark: In (Krishnan et al., 2015), the authors denote by ut−1 the
input at time t in the generative model, like in many control theory papers on
SSMs, and not ut as we do, as we pointed out in a previous footnote. However,
when defining the four approximate posterior models, they do it exactly as we
report here, i.e., with ut being synchronous to zt and xt. We conjecture that this
problem is just a notation mistake in (Krishnan et al., 2015) that we somehow
implictly corrected by using ut instead of ut−1 as the input at time t in the
generative model.

3It is difficult to know from the paper since the implementation is not detailed. The authors
mention an RNN to model the dependencies on x and u, but the implementation of the dependency
on zt−1 is not specified.
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In (Krishnan et al., 2017), the authors present basically the same generative
model, renamed DMM, and presented in undriven mode, i.e., u1:T is simply
removed. However, they largely clarify and improve on their previous paper
regarding the inference model: They propose a new series of inference models
that clearly do or do not depend on zt−1 and that also vary regarding the de-
pendence on observed data. They consider again the case of dependency on the
past (and present) data sequence x1:t and on the complete data sequence x1:T .
More importantly, they now also consider the case of an inference model with
a functional form that corresponds exactly to the form of the “true” posterior
distribution, that is qφ(zt|zt−1,xt:T ). In that case, for a complete data sequence
we have:

qφ(z1:T |x1:T ) =
T∏
t=1

qφ(zt|zt−1,xt:T ). (5.3)

This model is referred to as the Deep Kalman Smoother (DKS), since it combines
information from the past (through zt−1) and information from the present and
future observations.

For concision of presentation, we report the detailed inference equations only
for the DKS, and we will comment on their extension to the other proposed in-
ference models. The DKS is implemented with a backward RNN on xt, followed
by an additional layer for the combination of the RNN output with zt−1:

←−g t = e←−g (←−g t+1,xt), (5.4)

gt =
1

2

(
tanh(Wzt−1 + b) +←−g t

)
, (5.5)

[µφ(gt),σφ(gt)] = ez(gt), (5.6)

qφ(zt|gt) = N
(
zt;µφ(gt),diag{σ2

φ(gt)}
)
. (5.7)

In the above equations, ez is a basic combining network, parameterized by φz ,
µφ(gt) is an affine function of gt, and σ2

φ(gt) is a softplus of an affine function
of gt. We thus have here φ = φ←−g ∪ φz , assuming {W,b} ∈ φz for simplicity.

Because of the recursivity in (5.4), we can see gt as an unfolded deterministic
function of zt−1 and xt:T , that we can renote gt = gt(zt−1,xt:T ),4 and we have:
qφ(zt|gt) = qφ(zt|gt(zt−1,xt:T )). For a complete data sequence we have:

qφ(z1:T |x1:T ) =

T∏
t=1

qφ(zt|gt) =

T∏
t=1

qφ
(
zt|gt(zt−1,xt:T )

)
, (5.8)

which is just a rewriting of (5.3).
As mentioned above, in (Krishnan et al., 2017), this inference model is ex-

tended to a non-causal (bidirectional) model regarding the observations, qφ(zt|zt−1,x1:T ).
This is done by adding a forward RNN on xt, and sending the output −→g t of
this forward RNN into the combining network, in addition to zt−1 and ←−g t.

4This function is also a function of the initial state ←−g T of the backward RNN.
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xt−1 xt xt+1

zt−1 zt zt+1

xt−1 xt xt+1

Figure 5.1: Graphical model of DKF at inference time corresponding to the
inference model qφ(zt|zt−1,x1:T ), in developed form (left) and compact form
(right). The specific DKS model, which functional form qφ(zt|zt−1,xt:T ) ex-
actly corresponds to the form of the true posterior distribution, is obtained by
removing the forward RNN (and removing the blue arrows on the right-hand
schema).

For concision, we do not report the corresponding detailed equations, but this
more general model is represented in Fig. 5.1. The other models proposed in
(Krishnan et al., 2017) can be deduced from this general model by removing
elements. In particular, DKS is obtained by simply removing the forward RNN.
And models that do not depend on zt−1 are obtained by removing the arrows
between zt−1 and gt for all t.

It is clear from the above equations and from Fig. 5.1 that the inference of
zt with DKS requires a first backward pass from xT up to x1. Then for each
t ∈ [1, T ],←−g t is combined with previous sample of zt−1, then zt is sampled, and
then we can process to the inference of zt+1. In short, a complete backward
pass on xt. In the DVAE literature, the approximate posterior is usually defined
by applying again the chain rule: is followed by a complete forward pass on zt
which include iterative sampling of zt. As for the bidirectional version, we just
need an additional forward pass on xt.
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5.3 Training

Comparing the specific compact form of DKF in (3.13) with the general compact
form of a DVAE in (4.4), we see that the DKF model makes the following
conditional independence assumptions:

pθx (xt|x1:t−1, z1:t,u1:t) = pθx (xt|zt);
pθz (zt|x1:t−1, z1:t−1,u1:t) = pθz (zt|zt−1,ut). (5.9)

Using these two simplifications along with the inference model (5.3) (extended
to be in driven mode for the sake of generality), the VLB in its most general
form (4.24) can be simplified as follows:

L(θ, φ; x1:T ,u1:T ) =

T∑
t=1

Eqφ(zt|x1:T ,u1:T )

[
ln pθx (xt|zt)

]
−

T∑
t=1

Eqφ(zt−1|x1:T ,u1:T )

[
DKL

(
qφ(zt|zt−1,xt:T ,ut:T ) ‖ pθz (zt|zt−1,ut)

)]
.

(5.10)

The KL divergence in (5.10) can be computed analytically while the two expec-
tations are intractable. In (Krishnan et al., 2015) and (Krishnan et al., 2017),
no detailed information is provided regarding how to approximate these expec-
tations, it is only mentioned that “stochastic backpropagation” is used, referring
the reader to (Kingma and Welling, 2014) and (Rezende et al., 2014) where the
so-called reparametrization trick was introduced for standard “static” VAEs.
However, due to the dynamical nature of the model, the sampling procedure
required for stochastic backpropagation in DKF is more complicated than in
standard VAEs, and it deserves more details that we give now. It is important
to note that we do not have an analytical form for qφ(zt|x1:T ,u1:T ), we only
have one for qφ(zτ |zτ−1,xτ :T ,uτ :T ). Therefore, we have to exploit the chain
rule and the “cascade trick” to develop and then approximate the intractable
expectations in (5.10). The first expectation in this expression of the VLB can
be trivially developed as follows:

Eqφ(zt|x1:T ,u1:T )[f(zt)] = Eqφ(z1:t|x1:T ,u1:T )[f(zt)]

= Eqφ(z1|x1:T ,u1:T )[

Eqφ(z2|z1,x2:T ,u2:T )[ ...

Eqφ(zt|zt−1,xt:T ,ut:T )[f(zt)] ... ]], (5.11)

where f(zt) denotes an arbitrary function of zt. A similar procedure can be
used to develop the second expectation in (5.10). Each individual intractable
expectation in this cascade of expectations can then be approximated with a
Monte Carlo estimate. It requires to sample iteratively qφ(zτ |zτ−1,xτ :T ,uτ :T )
(which we know analytically) from τ = 1 to t, using the same reparametrization
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trick as in standard VAEs. Doing so, the VLB becomes differentiable w.r.t θ
and φ and can be optimized with gradient-ascent-based techniques.5

5Note that optimization of the VLB w.r.t. θ and φ actually means w.r.t. θx , θz , φ←−g and φz

(remind that we have θ = θx ∪ θz and φ = φ←−g ∪ φz ).
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Chapter 6

Kalman Variational
Autoencoders (KVAE)

The Kalman Variational Autoencoder (KVAE) model was presented in (Frac-
caro et al., 2017). Basically, KVAE can be seen as a variant of DKF, hence
another deep SSM, where an additional random variable denoted at is inserted
in between the latent vector zt and the observed vector xt, as illustrated in
Fig. 6.1. This enables to separate the model in two parts: A deep feature
extractor linking at and xt, and the dynamical model on zt with “new obser-
vations” at. As we will see below this provides the model with very interesting
properties for inference and training.

6.1 Generative model

The general formulation of the KVAE model is given by:

[µθz (zt−1,ut),σθz (zt−1,ut)] = dz(zt−1,ut), (6.1)

pθz (zt|zt−1,ut) = N
(
zt;µθz (zt−1,ut),diag{σ2

θz (zt−1,ut)}
)
,

(6.2)

[µθa (zt),σθa (zt)] = da(zt), (6.3)

pθa (at|zt) = N
(
at;µθa (zt),diag{σ2

θa (zt)}
)
, (6.4)

[µθx (at),σθx (at)] = dx(at), (6.5)

pθx (xt|at) = N
(
xt;µθx (at),diag{σ2

θx (at)}
)
. (6.6)

In (Fraccaro et al., 2017), Eqs. (6.1) and (6.3) are linear equations, i.e., they
are given by (3.16) and (3.17), respectively (with a in place of x, null bias
vectors nt,mt and time-invariant covariance matrices Λ,Σ). Therefore, we
have θz = {At,Bt, }Tt=1 ∪{Λ} and θa = {Ct, }Tt=1 ∪{Σ}, and the sub-model on
{ut, zt,at} is a very classical (non-deep) Linear-Gaussian LDS. In contrast, dx
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ut−1 ut ut+1

zt−1 zt zt+1
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xt−1 xt xt+1

Figure 6.1: KVAE’s graphical model.

in (6.5) is implemented with a DNN, of parameter set θx (e.g., a basic MLP,
or a CNN for video sequence modeling). This network plays the role of a deep
feature extractor, with the dimensionality of at being potentially much lower
than the dimensionality of xt. The feature vector at is expected to encode the
properties of the “object(s)” present in the observation xt, while zt is expected
to encode the dynamics of those objects, which is an important application of
the disentanglement concept that we have already mentioned. As we will see,
in the KVAE case, this can be a great advantage for solving the dynamical part
of the model.

The joint distribution of all random variables factorizes as:

pθ(x1:T ,a1:T , z1:T ,u1:T ) =

T∏
t=1

pθx (xt|at)pθa (at|zt)pθz (zt|zt−1,ut)p(ut), (6.7)

and we also have:

pθx (x1:T |a1:T ) =

T∏
t=1

pθx (xt|at), (6.8)

pθa (a1:T |z1:T ) =

T∏
t=1

pθa (at|zt), (6.9)

pθz (z1:T |u1:T ) =

T∏
t=1

pθz (zt|zt−1,ut). (6.10)

Given the state sequence z1:T , the features a1:T are independent, and given the
features sequence, the observations x1:T are independent.

In (Fraccaro et al., 2017), the authors mention the classical limitation of
LDS for modeling abrupt changes in the trajectory of the LDS output (here at).
A classical solution to this problem is to include in the model a “switching strat-
egy” between different models or different parameterizations of the model, see,
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e.g., the Switching Kalman Filter (Murphy, 1998; Fox et al., 2011). In (Fraccaro
et al., 2017) the authors propose to define each parameter of the LDS at each
time t (e.g., matrix At) as a linear combination of pre-defined matrices/vectors
from a parameter bank, and the coefficients of the linear combination are es-
timated at each time t from the past features a1:t−1 using an LSTM network.
Although very interesting, and a contribution on its own, we do not consider
more this part of the KVAE model here, since this is poorly relevant to our
model review. We however provide a few more information on its implementa-
tion in Section 13.1.2. Note that a quite similar transition model was proposed
independently in (Karl et al., 2017) as an instance of Deep Variational Bayesian
Filter (DVBF), an extended class of SSM-based DVAE models enriched with
stochastic transition parameters (see also (Watter et al., 2015)).

6.2 Inference model

For the KVAE model, the posterior distribution of all latent variables given
observed variables is pθ(a1:T , z1:T |x1:T ,u1:T ). This latter factorizes as:

pθ(a1:T , z1:T |x1:T ,u1:T ) = pθ(z1:T |a1:T ,x1:T ,u1:T )pθ(a1:T |x1:T ,u1:T ),

= pθ(z1:T |a1:T ,u1:T )pθ(a1:T |x1:T ,u1:T ), (6.11)

where the simplification of the first term on the right hand side comes from
D-separation. A keypoint that appears here is that, if the sequence of features
a1:T is known, then pθ(z1:T |a1:T ,u1:T ) has an analytical solution which is the
Kalman filter or Kalman smoother (see Section 3.2.2). This Kalman solution
is very classic and it is not detailed here for concision.1 The other factor,
pθ(a1:T |x1:T ,u1:T ), is more problematic.

The authors of (Fraccaro et al., 2017) do not discuss the form of the true
posterior distribution, yet they propose the following factorized inference model,
that exploits the Kalman solution:

qφ(a1:T , z1:T |x1:T ,u1:T ) = pθ(z1:T |a1:T ,u1:T )qφ(a1:T |x1:T ) (6.12)

= pθ(z1:T |a1:T ,u1:T )

T∏
t=1

qφ(at|xt), (6.13)

where

qφ(at|xt) = N
(
at;µφ(xt),diag{σ2

φ(xt)}
)

(6.14)

is implemented with a fully-connected DNN:

[µφ(xt),σφ(x)] = ea(xt). (6.15)

Importantly, if we look at (6.5), (6.6), (6.14) and (6.15), we can see that they are
identical to (2.5), (2.2), (2.7) and (2.9), with at in place of x, and zt in place of

1We can simply note that here, the Kalman solution depends only on θa ∪ θz , but not on θx .
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ut−1 ut ut+1

zt−1 zt zt+1

at−1 at at+1

xt−1 xt xt+1

Figure 6.2: KVAE’s graphical model at inference time. The black arrows repre-
sent the Kalman filter solution (causal solution) of the LG-LDS on {u1:T , z1:T ,
a1:T }. The blue arrows represent the VAE encoder from xt to at. The inference
solution for the complete KVAE model is a combination of those two.

z. This means that, with the proposed inference model, KVAE is composed of
a VAE modeling the relationship between at and xt, placed on top of a Linear-
Gaussian LDS on ut, zt and at, and that the inference solutions of the VAE
and of the LG-LDS can be combined for the solution of this combined model.
This is illustrated in Fig. 6.2.

This inference model is thus designed to take benefit from both the VAE
methodology and the well-known efficiency of the “simple” LG-LDS model for
tracking data dynamics. Note that the LG-LDS solution, which requires inverse
matrix calculation, highly benefits from notable xt-to-at dimension reduction.
Also, although this is not exactly discussed in those terms in (Fraccaro et al.,
2017), we may envision that one possible motivation for designing the KVAE
model is that the joint learning of all parameters (see next subsection) may
encourage the feature extractor to provide at features that are well-suited to a
linear dynamical model, i.e., the non-linear relations between observations xt
and dynamics zt are (at least largely) modeled via the VAE.

46



6.3 Training

The variational lower-bound for the KVAE model starts as usual:

L(φ, θ; x1:T ,u1:T ) = Eq(z1:T ,a1:T |x1:T ,u1:T )

[
log pθ(x1:T |z1:T ,a1:T ,u1:T )

]
−DKL(q(z1:T ,a1:T |x1:T ,u1:T )||pθ(z1:T ,a1:T |u1:T )) (6.16)

= Eqφ(a1:T |x1:T )pθ(z1:T |a1:T ,u1:T )

[
log pθ(x1:T |a1:T )

]
−DKL(qφ(a1:T |x1:T )pθ(z1:T |a1:T ,u1:T )||pθ(z1:T ,a1:T |u1:T )) (6.17)

= Eqφ(a1:T |x1:T )

[
log pθ(x1:T |a1:T )/qφ(a1:T |x1:T )

−DKL(pθ(z1:T |a1:T ,u1:T )||pθ(a1:T |z1:T )pθ(z1:T |u1:T ))
]
, (6.18)

where we have used the proposed decomposition of the posterior as well as the
generative model.

In practice, one first samples from qφ(at|xt) for every t. These samples are
fed to a standard Kalman smoother that computes pθ(z1:T |a1:T ,u1:T ). We can
then easily sample from this distribution. Importantly, this allows for jointly
learning the parameters of the VAE (both encoder and decoder) and of the
LG-LDS. Alternatively, one could get rid of z1:T by integrating this out, but
this would then not allow for learning the parameters of the LG-LDS using
stochastic gradient ascent.
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Chapter 7

STOchastic Recurrent
Networks (STORN)

To our knowledge, the STOchastic Recurrent Networks model (STORN) (Bayer
and Osendorfer, 2014) is the first DVAE model to combine an internal deter-
ministic state ht and an internal stochastic state zt. STORN was presented
in (Bayer and Osendorfer, 2014) in predictive mode (i.e., with ut = xt−1), and
from now on we keep this mode for all models for easier comparison, but STORN
can be easily set-up in driven mode with an external input ut.

7.1 Generative model

The STORN observation model is given by:

ht = dhid(Winxt−1 + Wlatzt + Wrecht−1 + bhid), (7.1)

[µθx (ht),σθx (ht)] = dout(Woutht + bout), (7.2)

pθx (xt|ht) = N
(
xt;µθx (ht),diag{σ2

θx (ht)}
)
. (7.3)

Therefore, Equations (7.2) and (7.3) are the same as for a basic single-layer
GRNN, but in STORN zt forms an additional input to the internal state ht. We
discuss some consequences below. Note that STORN was originally presented
in the above framework of a single-layer RNN, but it can be easily generalized
to a deep RNN defined by (3.5)–(3.7) by inserting zt as an additional input to
the network (and of course setting ut = xt−1):

ht = dh(xt−1, zt,ht−1), (7.4)

[µθx (ht),σθx (ht)] = dx(ht), (7.5)

pθx (xt|ht) = N
(
xt;µθx (ht),diag{σ2

θx (ht})
)
. (7.6)

In the following, we keep this latter more general formulation, for easier com-
parison with the other models. We recall that we denote by θh and θhx the set
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Figure 7.1: STORN’s graphical model in developed form (left) and compact
form (right).

of parameters of the networks implementing dh and dx , respectively, and we
have θx = θh ∪ θhx .

In STORN, zt is assumed i.i.d. with standard Gaussian distribution:

pθz (z1:T ) =

T∏
t=1

pθz (zt) with pθz (zt) = N (zt; 0, IL). (7.7)

In short, there is no temporal model on zt. Note that here we have θz = ∅, and
therefore θ = θx . The graphical model of STORN is given in Fig. 7.1 (left).

Notation remark: To ensure homogeneous notations across models, we slightly
changed the notation of (Bayer and Osendorfer, 2014) by “synchronising” xt and
ht, i.e., in our presentation of STORN, xt is generated from ht (and ht is gener-
ated from xt−1, ht−1 and zt). In (Bayer and Osendorfer, 2014) (Eq. (4)), xt+1

is generated from ht (and ht is generated from xt, ht−1 and zt). In other words,
we have replaced xt with xt−1. This change of notation does not change the
model in essence while it makes the comparison with the other models easier.

Eq. (7.4) shows that the two states ht and zt are intricate, and the inter-
pretation of ht as a deterministic state is now an issue. In fact, ht is now a
random variable, but it is not a “free” one, since it is a deterministic function
of the latent random variables zt and xt−1 and of its previous value ht−1. We
present a proper treating of this issue in Section 15: The recurrence on ht is
unfolded to consider ht as a deterministic function of z1:t and x1:t−1, that we
can denote ht = ht(x1:t−1, z1:t),

1 and we consider a Dirac distribution of ht at
that function location (note that these points are rapidly discussed in (Bayer
and Osendorfer, 2014), but not much detailed). It is shown in Section 15 that

1This function also depends on the initial vectors x0 and h0 (and we can set x0 = ∅), but we
omit them for clarity of presentation.
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marginalizing the joint density pθ(x1:T , z1:T ,h1:T ) w.r.t. h1:T leads to:

pθ(x1:T , z1:T ) =

T∏
t=1

pθx
(
xt|ht(x1:t−1, z1:t)

)
p(zt). (7.8)

From the above equation and (7.7), we deduce the conditional distribution:

pθx (x1:T |z1:T ) =

T∏
t=1

pθx
(
xt|ht(x1:t−1, z1:t)

)
. (7.9)

We can remark that those data sequence densities factorize across time frames,
but the whole history of present and past latent variables and past outputs
is necessary to generate the present output. This history is summarized in
ht(x1:t−1, z1:t).

In the line of the discussion in Section 4.1.2, an alternate description of
STORN can be written, where we remove the internal deterministic state h and
express the model only in terms of the free random variables x1:T and z1:T :

pθ(x1:T , z1:T ) =

T∏
t=1

pθx (xt|x1:t−1, z1:t)p(zt), (7.10)

and

pθx (x1:T |z1:T ) =

T∏
t=1

pθx (xt|x1:t−1, z1:t). (7.11)

The two above equations are more general than (7.8) and (7.9), but they loose
some information on the deterministic link between x1:t−1 and z1:t in the process
of generating xt. The compact graphical representation corresponding to this
alternate formulation is given in Fig. 7.1 (right).

7.2 Inference model

Following Section 4.2, it is easy to show that the true posterior distribution of
STORN takes the form:

pθ(z1:T |x1:T ) =

T∏
t=1

pθ(zt|z1:t−1,x1:T ). (7.12)

In fact, this expression is obtained by the chain rule and it does not simplify by
applying D-separation. This is because any vector in z1:t−1 and x1:T is either a
child, a parent or a co-parent of zt in the graphical representation of STORN. In
other words, each product term at time t in (7.12) depends on past observed and
latent state vectors that propagate through the internal state, and it depends
on present and future observed vectors since zt propagates to them through the
internal hidden states.
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To complement the discussion on the form of the true posterior, we can also
deduce from (7.8) that:

pθ(z1:T |x1:T ) ∝ pθ(x1:T , z1:T ) = pθx (x1:T |z1:T )p(z1:T ), (7.13)

and thus:

pθ(z1:T |x1:T ) ∝
T∏
t=1

pθx
(
xt|ht(x1:t−1, z1:t)

)
p(zt). (7.14)

This latter equation does not represent a practical form since its complete cal-
culation would require knowledge of pθ(x1:T ) which is not tractable. However,
we can note that zt is present in all the terms ht(x1:t−1, z1:t) from t to T , and
thus this confirms again that (7.14) seen as a function of zt depends not only
on x1:t−1 but also on xt:T .

As for practical inference in STORN, the approximate posterior distribution
qφ is chosen in (Bayer and Osendorfer, 2014) as generated by an additional
forward RNN. Very poor information is given on the implementation. It is
said that the parameters of the approximate distribution of zt are generated
from x1:t, which is a bit strange since xt+1 was generated from zt (with their
notations; see our remark in the previous subsection). There is thus a 1-step
lag between generation and inference, which is difficult to justify (in practice we
have found that this leads to significantly inferior inference performances). With
our change of notation at generation, we somehow automatically compensate
this gap, and we assume that the “correct” detailed inference equations are
given by:

gt = eg(Wenc
in xt + Wenc

rec gt−1 + benc
hid), (7.15)

[µφ(gt),σφ(gt)] = ez(Wenc
outgt + benc

out), (7.16)

qφ(zt|gt) = N
(
zt;µφ(gt),diag{σ2

φ(gt)}
)
, (7.17)

where gt denotes the inference RNN internal state,2 and eg and ez are non-
linear activation functions. Similarly to the generative model, because of the
recursivity in (7.15), we can see gt as an unfolded deterministic function of x1:t,
that we can renote gt = gt(x1:t).

3 For a complete data sequence we have:

qφ(z1:T |x1:T ) =

T∏
t=1

qφ(zt|gt) =

T∏
t=1

qφ
(
zt|gt(x1:t)

)
. (7.18)

The graphical model corresponding to this approximate inference process is
given in Fig. 7.2. The inference model can be rewritten in the general form:

qφ(z1:T |x1:T ) =

T∏
t=1

qφ(zt|x1:t). (7.19)

2In (Bayer and Osendorfer, 2014), it is denoted hrt .
3This function is also a function of g0.
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Figure 7.2: STORN’s graphical model at inference time, in developed form
(left) and compact form (right). Golden arrows correspond to missing links
on the proposed probabilistic dependencies (compared to the exact inference
dependencies).

We remark that this approximate inference model is inconsistent with the true
posterior pθ(z1:T |x1:T ) in several points: At each time t, it does not consider
the future observations xt+1:T , nor the past latent states z1:t−1. As discussed
in Section 4.2.3, the internal states of the encoder and of the decoder can be
identical or they can be different. In STORN, given the choice of the inference
model, these internal states depend on different variables, and therefore they
are different.

7.3 Training

Comparing the compact form of STORN in (7.10) with the general compact
form of a DVAE in (4.4) (simplified without u1:T ), we see that STORN makes
the following conditional independence assumption:

pθz (zt|x1:t−1, z1:t−1) = p(zt). (7.20)

Using this single simplification, the VLB given in its most general form in (4.24)
can be rewritten as follows:

L(θ, φ; x1:T ) =

T∑
t=1

Eqφ(z1:t|x1:T )

[
ln pθx (xt|x1:t−1, z1:t)

]
−

T∑
t=1

Eqφ(z1:t−1|x1:T ) [DKL (qφ(zt|z1:t−1,x1:T ) ‖ p(zt))] . (7.21)

This expression of the VLB relies on an inference model which is consistent
with the true posterior (7.12). However, as discussed above, STORN assumes
an inference model of the form: qφ(zt|z1:t−1,x1:T ) = qφ(zt|x1:t). Consequently,
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the VLB in (7.21) simplifies as:

L(θ, φ; x1:T ) =

T∑
t=1

Eqφ(z1:t|x1:T )

[
ln pθx (xt|x1:t−1, z1:t)

]
−

T∑
t=1

DKL (qφ(zt|x1:t) ‖ p(zt)) . (7.22)

The KL divergence in this expression can be computed analytically, while the
expectation is intractable and should be approximated by a Monte Carlo esti-
mate, using samples drawn recursively from qφ(z1:t|x1:T ) based on the inference
model (7.18). As for DKF, using the reparametrization trick for this recursive
sampling leads to an objective function which is differentiable w.r.t θ and φ.
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Chapter 8

Variational Recurrent
Neural Networks (VRNN)

The Variational Recurrent Neural Network model (VRNN) was proposed in
(Chung et al., 2015), as a combination of a VAE and a RNN.

8.1 Generative model

The VRNN observation model is given by:

ht = dh(ϕx(xt−1), ϕz(zt−1),ht−1), (8.1)

[µθx (zt,ht),σθx (zt,ht)] = dx(ϕz(zt),ht), (8.2)

pθx (xt|zt,ht) = N
(
xt;µθx (zt,ht),diag{σ2

θx (zt,ht)}
)
, (8.3)

where ϕz and ϕx are feature extractors which are mentioned by the authors of
(Chung et al., 2015) to be important in practice. Those feature extractors are
DNNs parameterized by a set of weights and biases denoted τ . The conditional
prior distribution1 of zt is given by:

[µθz (ht),σθz (ht)] = dz(ht), (8.4)

pθz (zt|ht) = N
(
zt;µθz (ht),diag{σ2

θz (ht)}
)
. (8.5)

Notation remark: In (Chung et al., 2015), τ is used to denote the set of pa-
rameters for both feature extractors (respectively denoted ϕx

τ and ϕz
τ in (Chung

et al., 2015)), as well as for dx and dz (respectively denoted ϕdec
τ and ϕprior

τ

in (Chung et al., 2015)). Moreover, in (Chung et al., 2015), dh is denoted dθ.
We find this a bit confusing and we prefer to distinguish τ , θx = θh ∪ θhx ,
θz = θh ∪ θhz and θ = τ ∪ θx ∪ θz . Moreover, one may also want to distinguish

1These are the terms employed in (Chung et al., 2015). We prefer to speak about the generative
distribution of zt.
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Figure 8.1: VRNN’s graphical model in developed (left) and compact (right)
forms.

τx and τz to make clear that the two feature extractors are different. We keep τ
for simplicity. Besides, we replaced ht−1 in (Chung et al., 2015) with ht to have
ht, zt and xt synchronized, i.e., xt is generated from ht and zt. This arbitrary
reindexing of ht does not change the model conceptually.

In VRNN, we thus have multiple intrications of ht and zt in both the obser-
vation model and the distribution of zt. The graphical model of VRNN is given
in Fig. 8.1 (left). The generative process starts here with an initial internal
state h1, from which we generate z1. From h1 and z1, we generate x1. Then,
h2 is deterministically calculated from h1, z1 and x1. And so on, except that
from now on, zt is generated from zt−1, ht−1, and xt−1. Using the same “un-
folding the recurrence” trick as in the previous sections, we can here redenote
ht = ht(x1:t−1, z1:t−1),2 and we have: pθz (zt|ht) = pθz (zt|ht(x1:t−1, z1:t−1))
and pθx (xt|zt,ht) = pθx (xt|zt,ht(x1:t−1, z1:t−1)). Note that this provides both
zt and xt with an implicit temporal model.

As for a data sequence, when marginalizing the joint distribution of all vari-
ables w.r.t. h1:T following the line of Section 15, we get:3

pθ(x1:T , z1:T ) =

T∏
t=1

pθx
(
xt|zt,ht(x1:t−1, z1:t−1)

)
pθz
(
zt|ht(x1:t−1, z1:t−1)

)
(8.6)

=

T∏
t=1

pθ
(
xt, zt|ht(x1:t−1, z1:t−1)

)
. (8.7)

Again, we have a factorization of the conditional densities over time frames.
Note that we do not have conditional independence of xt and zt conditionally
to the state ht(x1:t−1, z1:t−1) due to the direct link from zt to xt.

2This function also depend on h1, which is omitted for clarity of presentation.
3We obtain the same result with pθ(x1:T , z1:T ) = pθ(xT , zT |x1:T−1, z1:T−1)pθ(x1:T−1, z1:T−1) =

pθ(xT , zT |ht(x1:T−1, z1:T−1))pθ(x1:T−1, z1:T−1), and applying the recurrence.
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As for STORN we can provide a more general alternate expression for
pθ(x1:T , z1:T ) that does not explicitate the internal state but only represent
the general dependencies between the free random variables:

pθ(x1:T , z1:T ) =

T∏
t=1

pθx (xt|x1:t−1, z1:t)pθz (zt|x1:t−1, z1:t−1) (8.8)

=

T∏
t=1

pθ(xt, zt|x1:t−1, z1:t−1). (8.9)

The corresponding compact graphical model is given in Fig. 8.1 (right).

8.2 Inference model

The general form of the true posterior distribution of VRNN is identical to the
one of STORN, i.e., it trivially factorizes into:

pθ(z1:T |x1:T ) =

T∏
t=1

pθ(zt|z1:t−1,x1:T ), (8.10)

and, here also, no further simplification can come from D-separation.
The approximate posterior distribution qφ is chosen in (Chung et al., 2015)

as:

[µφ(xt,ht),σφ(xt,ht)] = ez
(
ϕx(xt),ht

)
, (8.11)

qφ(zt|xt,ht) = N
(
zt;µφ(xt,ht),diag{σ2

φ(xt,ht)}
)
, (8.12)

where ez is the encoder DNN, parameterized by φz . As for data sequence
inference, we have here:

qφ(z1:T |x1:T ) =

T∏
t=1

qφ
(
zt|xt,ht(x1:t−1, z1:t−1)

)
. (8.13)

We can see that, as opposed to STORN, the same internal state ht is here shared
by the VRNN encoder and the VRNN decoder, which, to our opinion, makes the
approximate model more consistent with the true posterior.4 Also, the inference
at time t depends here on past outputs and past latent states, which also make
it closer to the true posterior. However, compared to the true posterior, the
future observations (from t+ 1 to T ) are missing again. In short, here also, the
approximate inference is causal whereas the true posterior is non-causal. The
graphical model corresponding to the VRNN approximate inference process is
given in Fig. 8.2. The inference model can be rewritten in the general form:

qφ(z1:T |x1:T ) =

T∏
t=1

qφ(zt|z1:t−1,x1:t). (8.14)

4Note that this makes the set of parameters θh common to the encoder and the decoder. Because
the feature extractor ϕx (xt) is also used at the encoder, we have the same for its parameter set τx .

56



zt−1 zt zt+1

ht−1 ht ht+1

xt−1 xt xt+1

zt−1 zt zt+1

xt−1 xt xt+1

Figure 8.2: VRNN’s graphical model at inference time, in developed form (left)
and compact form (right). Golden arrows correspond to missing links on the
proposed probabilistic dependencies (compared to the exact inference depen-
dencies).

8.3 Training

Comparing the compact form of VRNN in (8.8) with the general compact form
of a DVAE in (4.4) (simplified without u1:T ), we see that VRNN does not make
any conditional independence assumption in the generative model. In this sense,
VRNN is the most general DVAE model that we have seen so far. The expres-
sion of the VLB for VRNN should therefore be the one given in (4.24). How-
ever, as discussed above, the inference model in VRNN is inconsistent with the
true posterior as the following conditional independence assumption is made:
qφ(zt|z1:t−1,x1:T ) = qφ(zt|z1:t−1,x1:t). Consequently, the VLB in (4.24) simpli-
fies as:

L(θ, φ; x1:T ) =

T∑
t=1

Eqφ(z1:t|x1:T )

[
ln pθx (xt|x1:t−1, z1:t)

]
−

T∑
t=1

Eqφ(z1:t−1|x1:T )

[
DKL

(
qφ(zt|z1:t−1,x1:t) ‖ pθz (zt|x1:t−1, z1:t−1)

)]
.

(8.15)

As for previous DVAE models, the KL divergence can be computed analytically
and intractable expectations are approximated by Monte Carlo estimates.

8.4 Improved VRNN and VRNN applications

To complement this VRNN section, we can report that an improved version
of VRNN was presented in (Goyal et al., 2017). The authors point out the
difficulty in learning meaningful latent variables when coupled with a strong
autoregressive decoder. We rediscuss this point and we provide a series of ref-
erences in the next subsection and in Section 14. In (Goyal et al., 2017), the
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authors propose to improve the inference and training of VRNN with the three
following features.

First, possibly inspired by (Krishnan et al., 2017) (and also by (Fraccaro
et al., 2016), see Section 9.2), they introduce a backward RNN on xt to feed the
approximate posterior distribution qφ(z1:T |x1:T ), in the spirit of the one used in
DKS (see Section 5.2). Therefore, they take into account future observations in
the inference process, as opposed to the original VRNN, going toward a better
compliance with the structure of the true posterior distribution pθ(z1:T |x1:T ).

Second, they force the latent variable zt to contain relevant information
about the future of the sequence by tying zt with the internal state of the
inference backward network (denoted bt in (Goyal et al., 2017)). This is done
by introducing an additional conditional model pξ(bt|zt) and adding it in the
VLB. In the same spirit they also consider an additional conditional model
pξ(xt|bt).

Finally, they slightly modify the VRNN model itself by removing the direct
link between zt and xt, that is they replace (8.2)–(8.3) with (7.5)–(7.6), all other
equations remaining identical to the VRNN equations. The authors reports
that “[they] observed better performance by avoiding the latent variables from
directly producing the next output.”

An adaptation of VRNN to automatic language translation is proposed in
(Su et al., 2018). This is doubly interesting because this paper considers a
sequence of discrete inputs and discrete outputs, which comes in contrast to the
“all continuous” models we focus on. This paper also comes in contrast with
previous VAE-based models for text/language processing, which, as mentioned
in the introduction, rather consider a single latent vector to encode a whole
input sequence (a full sentence). In (Su et al., 2018) it is the sequence of latent
vectors z1:T that encodes the semantic content of the sequence to translate,
“over time.”

Finally, we can also briefly mention here the study in (Lee et al., 2018)
which uses a VRNN for speech synthesis and adopt adversarial training. Beyond
VRNN, all those papers illustrates the flexibility of the DVAE models.
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Chapter 9

Stochastic Recurrent
Neural Networks (SRNN)

The Stochastic Recurrent Neural Network model (SRNN) has been proposed
in (Fraccaro et al., 2016). According to the authors, the objective is to “glue
(or stack) a deterministic recurrent neural network and a state space model
together to form a stochastic and sequential neural generative model.”

Notation remark: In (Fraccaro et al., 2016), ht is denoted dt, and the model
is presented in driven mode, i.e., with an external input ut, which is here re-
placed with xt−1 (i.e., predictive mode) for a better comparison with VRNN
and STORN.

9.1 Generative model

The SRNN observation model is given by:

ht = dh(xt−1,ht−1), (9.1)

[µθx (zt,ht),σθx (zt,ht)] = dx(zt,ht), (9.2)

pθx (xt|zt,ht) = N
(
xt;µθx (zt,ht),diag{σ2

θx (zt,ht)}
)
. (9.3)

Eq. (9.1) is identical to (3.3)1 and thus refers to the usual deterministic RNN.
Eq. (9.2) and (9.3) are quite similar to (8.2) and (8.3). So, the internal state ht
remains here totally deterministic and the integration of the latent state zt is
done at the dx level. This justifies the “clear(er) separation of deterministic and
stochastic layers” claimed by the authors of (Fraccaro et al., 2016), compared
to VRNN.

The authors of (Fraccaro et al., 2016) also introduce an explicit temporal
model on the distribution of zt (as opposed to implicit temporal dependency

1with xt−1 instead of ut.
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Figure 9.1: SRNN’s graphical model in developed (left) and compact (right)
forms.

through ht in VRNN), in addition to the dependency on the internal state ht:

[µθz (zt−1,ht),σθz (zt−1,ht)] = dz(zt−1,ht), (9.4)

pθz (zt|zt−1,ht) = N
(
zt;µθz (zt−1,ht),diag{σ2

θz (zt−1,ht)}
)
. (9.5)

Basically, compared to VRNN, the arrow from zt−1 to ht is replaced with an
arrow from zt−1 to zt, leading to an explicit first-order Markovian dependency
for zt (which is combined with the dependency on ht). Also, compared to
VRNN, no feature extractor is mentioned in SRNN, so that we have here θ =
θx ∪ θz (and again θx = θh ∪ θhx and θz = θh ∪ θhz). The graphical model
of SRNN is given in Fig. 9.1 (left). Note that both dx and dz are two-layer
feed-forward networks in (Fraccaro et al., 2016). dh is a GRU RNN so that,
according to the authors, “the SSM can therefore utilize long-term information
captured by the RNN.”

Using the same “unfolding the recurrence” trick as in the previous sec-
tions, we here redenote ht as ht(x1:t−1),2 and we have: pθz (zt|zt−1,ht) =
pθz (zt|zt−1,ht(x1:t−1)) and pθx (xt|zt,ht) = pθx (xt|zt,ht(x1:t−1)). Again, if we
follow the line of Section 15, marginalizing the joint distribution of all variables
w.r.t. h1:T leads here to:

pθ(x1:T , z1:T ) =
T∏
t=1

pθx
(
xt|zt,ht(x1:t−1)

)
pθz
(
zt|zt−1,ht(x1:t−1)

)
. (9.6)

Again, we have a factorization over time frames, but no conditional (nor marginal)
independence of xt (or zt) across time frames (i.e., we have a temporal model
for xt and for zt), and no conditional independence between xt and zt.As for
STORN and VRNN, (9.6) can be reshaped into the more general alternate ex-
pression:

pθ(x1:T , z1:T ) =

T∏
t=1

pθx (xt|x1:t−1, zt)pθz (zt|zt−1,x1:t−1). (9.7)

2Again, we omit the initial term h1 for clarity of presentation.
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The corresponding compact graphical model is given in Fig. 9.1 (right).

9.2 Inference model

For SRNN, because of the dependencies in the generative model, the general
form of the true posterior distribution is here given by:

pθ(z1:T |x1:T ) =

T∏
t=1

pθ(zt|zt−1,x1:T ). (9.8)

At each time t, the posterior distribution of zt depends on previous latent state,
and the whole observation sequence.

Importantly, the authors of (Fraccaro et al., 2016) point out this structure
and propose an approximate posterior distribution qφ with the same structure.
This is the second time this proper methodology is considered in the present
review, after the DKS in Section 5.2, but in the publication chronology, to our
knowledge, this is the first time. The dependency of qφ on future observations,
and also on past observations through the future internal states, is implemented
with a gated backward RNN. This network is denoted e←−g in the equations below
and it is parameterized by φ←−g .3 Formally, qφ writes:

qφ(z1:T |x1:T ) =

T∏
t=1

qφ(zt|zt−1,
←−g t), (9.9)

with

←−g t = e←−g ([ht,xt],
←−g t+1), (9.10)

[µφ(zt−1,
←−g t),σφ(zt−1,

←−g t)] = ez(zt−1,
←−g t), (9.11)

qφ(zt|zt−1,
←−g t) = N

(
zt;µφ(zt−1,

←−g t),diag(σ2
φ(zt−1,

←−g t))
)
. (9.12)

ez is a basic feed-forward network, parameterized by φz . We thus have here
φ = φ←−g ∪ φz .

Notation remark: In (Fraccaro et al., 2016), qφ(z1:T |x1:T ) is denoted qφ(z1:T |d1:T ,x1:T ),
with dt = ht. Because we have ht = ht(x1:t−1), we can stick to qφ(z1:T |x1:T ).
The same principle applies to the true posterior pθ(z1:T |x1:T ).

As can be seen from the above equations, inference requires intricate forward
pass on the internal state ht (that is shared by the encoder and decoder), its
combination with xt, and backward pass on the inference RNN, which makes
←−g t a deterministic function of the whole data sequence x1:T .4 The graphical

3In (Fraccaro et al., 2016), the internal state of the decoder is denoted at. We consistently use
gt and we add here a right-to-left arrow to highlight the backward nature of the process.

4Similarly to ht, we can redenote ←−g t by ←−g t(x1:T ) to make this latter point explicit, but this is
poorly informative about the manner ←−g t depends on x1:T .
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xt−1 xt xt+1

Figure 9.2: SRNN’s graphical model at inference time, in developed form (left)
and compact form (right). In this case, there are no missing links on the pro-
posed probabilistic dependencies (compared to the exact inference dependen-
cies). Note that in the inference graphical model in (Fraccaro et al., 2016),
dependencies of ht were omitted for clarity. We make them explicit here to
recall that ht follows the deterministic update (9.1).

model corresponding to the inference process in SRNN is given in Fig. 9.2. The
inference model can be rewritten in the general form:

qφ(z1:T |x1:T ) =

T∏
t=1

qφ(zt|zt−1,x1:T ). (9.13)

Note that the authors also state that this smoothing process (combination of
forward and backward RNNs on xt) can be replaced with a filtering process, by
replacing (9.10)–(9.11) with an “instantaneous” DNN ez(zt−1,ht,xt).

9.3 Training

Comparing the compact form of SRNN in (9.7) with the general compact form
of a DVAE in (4.4) (simplified without u1:T ), we see that the SRNN model
makes the following conditional independence assumptions:

pθx (xt|x1:t−1, z1:t) = pθx (xt|x1:t−1, zt);

pθz (zt|x1:t−1, z1:t−1) = pθz (zt|x1:t−1, zt−1). (9.14)

Using these two simplifications along with the inference model (9.13) (which we
recall is consistent with the true posterior), the VLB in its most general form
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(4.24) can be simplified as follows:

L(θ, φ; x1:T ) =

T∑
t=1

Eqφ(zt|x1:T )

[
ln pθx (xt|x1:t−1, zt)

]
−

T∑
t=1

Eqφ(zt−1|x1:T )

[
DKL

(
qφ(zt|zt−1,x1:T ) ‖ pθz (zt|x1:t−1, zt−1)

)]
. (9.15)

Again, the KL divergence can be computed analytically and intractable expec-
tations are approximated by Monte Carlo estimates. The procedure to sample
from qφ(zt|x1:T ) and qφ(zt−1|x1:T ) relies on the “cascade trick,” as for DKF
(see Section 5.3).
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Chapter 10

Recurrent Variational
Autoencoders (RVAE)

A recurrent VAE (RVAE) was introduced in (Leglaive et al., 2020). This model
was used to represent the clean speech signal in a speech enhancement applica-
tion. It was combined with a Gaussian noise model with Non-negative Matrix
Factorization of the variance, within a Bayesian framework. The parameters of
the RVAE were estimated offline on a larget dataset of clean speech signals, using
the VAE methodology (maximization of the VLB). A variational Expectation-
Maximization (VEM) algorithm was then used for the estimation of the remain-
ing parameters from a noisy speech signal, and probabilistic Wiener filters were
then derived for speech enhancement. Here we present only the RVAE, since it
totally belongs to the present review framework.

10.1 Generative model

The RVAE model proposed in (Leglaive et al., 2020) was designed to model the
signal (here a clean speech signal) in the short-term Fourier transform (STFT)
domain. This implies that the model applies to a sequence of complex-valued
vectors. Therefore, the observation model uses a multivariate zero-mean circular
complex Gaussian distribution (Neeser and Massey, 1993), denoted Nc, instead
of the usual multivariate real-valued Gaussian distribution. This observation
model has the generic form:

σθx (zT ) = dx(zT ), (10.1)

pθx (xt|zT ) = Nc
(
xt; 0,diag{σ2

θx (zT )}
)
, (10.2)

where T denotes a set of time frames, and we have the three following cases:
i) an instantaneous model: T = {t}, which only considers the current latent
state vector to model the observation at time t; ii) a causal model: T = {1 : t},
which considers the sequence of past and present latent state vectors; and iii) a
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Figure 10.1: Causal RVAE’s graphical model in developed form (left) and com-
pact form (right).

non-causal model: T = {1 : T}, which considers the complete sequence of latent
state vectors.

Of course, this model can be adapted to real-valued observations with a usual
Gaussian distribution:1 we just have to replace Nc with N , replace 0 with a
mean parameter µθ(zT ) in (10.2), and add the latter to the left-hand-side of
(10.1), as usual. This is what we do from now on for easier comparison with
the other models.

As in STORN, zt is assumed i.i.d. with standard Gaussian distribution:

p(z1:T ) =

T∏
t=1

p(zt) with p(zt) = N (zt; 0, IL). (10.3)

Therefore, there is not explicit temporal model on zt, and xt possibly depends
on the past and future values of the latent state through (10.2). We have here
θz = ∅ and θ = θx . Note that case i) is strictly equivalent to the original VAE
of Section 2, with no temporal model at all, and we will thus focus now on cases
ii) and iii).

In (Leglaive et al., 2020), it is only mentioned that cases ii) and iii) are im-
plemented using a forward RNN and a bidirectional RNN, respectively, which
take as input the sequence z1:t or z1:T , respectively. The paper does not provide
the detailed implementation equations (though it provides a link to some sup-
plementary material, including informative schemas). Let us write them now,
for easier comparison with the other models (remind that for the same reason,
we consider real-valued observations).

1Or any other distribution for real-valued vectors, as already mentioned. In fact, under some
conditions, the complex proper Gaussian distribution applied on STFT coefficients corresponds to
a Gamma distribution on the squared magnitude of those coefficients (Girin et al., 2019).
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Causal case: Let us start with the causal case, for which we have:

ht = dh(zt,ht−1), (10.4)

[µθ(ht),σθ(ht)] = dx(ht), (10.5)

pθ(xt|ht) = N
(
xt;µθ(ht),diag{σ2

θ(ht)}
)
. (10.6)

Eq. (10.4) is very similar in form to the RNN internal state update (3.3) or (9.1),
with the major difference that the latent state zt is used as an input instead
of an external input ut or previous observation vector xt−1. Alternately, (10.4)
can be viewed as a simplified version of the STORN or VRNN internal state
updates (7.1) or (8.1), where only zt and ht−1 (and not xt−1) are used as
inputs. Considering both observation model and prior latent state model, the
causal RVAE model is quite close to STORN: The two differences with STORN
are that here xt−1 is not reinjected as input to the internal state ht and an
LSTM network is used instead of a single-layer RNN in the original STORN
formulation.

The graphical model of RVAE (causal case) is given in Fig. 10.1. As is
now usual in our developments, we can renote ht = ht(z1:t),

2 and we have
pθ(xt|ht) = pθ(xt|ht(z1:t)). For a complete data sequence, we have:

pθ(x1:T , z1:T ) =

T∏
t=1

pθ
(
xt|ht(z1:t)

)
p(zt), (10.7)

which as for the other models can be reshaped into the more general alternative
expression:

pθ(x1:T , z1:T ) =

T∏
t=1

pθx (xt|z1:t)p(zt). (10.8)

Non-causal case: All the DVAE models we have seen so far are causal models
(at generation). The non-causal case presented in (Leglaive et al., 2020) is the
first non-causal DVAE model that we met in the literature. Non-causality is
implemented with a combination of a forward RNN and a backward RNN on
zt:

−→
h t = d−→

h
(zt,
−→
h t−1), (10.9)

←−
h t = d←−

h
(zt,
←−
h t+1), (10.10)

ht = [
−→
h t,
←−
h t], (10.11)

[µθx (ht),σθx (ht)] = dx(ht), (10.12)

pθx (xt|ht) = N
(
xt;µθx (ht),diag{σ2

θx (ht)}
)
. (10.13)

2This function is also a function of h0, that we omit for clarity.
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Figure 10.2: Non-causal RVAE’s graphical model in developed form (left) and
compact form (right).

We thus have here ht = ht(z1:T ).3 The graphical representation of the non-
causal RVAE model is shown in Fig. 10.2. For a complete data sequence, we
have:

pθ(x1:T , z1:T ) =

T∏
t=1

pθ
(
xt|ht(z1:T )

)
p(zt), (10.14)

which can be reshaped into:

pθ(x1:T , z1:T ) =

T∏
t=1

pθx (xt|z1:T )p(zt). (10.15)

10.2 Inference model

As for the inference model, the authors in (Leglaive et al., 2020) first remark
that, using the chain rule and D-separation, the posterior distribution of the
latent vectors can be expressed as follows:

pθ(z1:T |x1:T ) =

T∏
t=1

pθ(zt|z1:t−1,xT ′), (10.16)

where in the causal case T ′ = {t : T}, and in the non-causal case T ′ = {1 : T}.
We can see that for the causal generative model, the latent vector at a given time

3This function is also a function of the initial internal states
−→
h 0 and

←−
h T+1, that we omit for

clarity.
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Figure 10.3: Graphical model of causal RVAE at inference time, in developed
form (left) and compact form (right).

step depends (a posteriori) on past latent vectors but also on present and future
observations, whereas for the non-causal generative model, it also depends on the
past observations. Therefore, they chose to define the variational distribution
qφ with the same form:

qφ(z1:T |x1:T ) =

T∏
t=1

qφ(zt|z1:t−1,xT ′). (10.17)

As for the generative model, we now detail the implementation of the inference
model.

Causal case: The inference corresponding to the causal generative model is
implemented by combining a forward RNN on the latent vectors and a backward
RNN on the observations:

−→g t = e−→g (zt−1,
−→g t−1), (10.18)

←−g t = e←−g (xt,
←−g t+1), (10.19)

gt = [−→g t,
←−g t], (10.20)

[µφ(gt),σφ(gt)] = ez(gt), (10.21)

qφ(zt|z1:t−1,xt:T ) = N
(
zt;µφ(gt),diag{σ2

φ(gt)}
)
, (10.22)

qφ(z1:T |x1:T ) =

T∏
t=1

qφ(zt|z1:t−1,xt:T ). (10.23)

This inference model is represented in Fig. 10.3.

Non-causal case: The inference corresponding to the non-causal generative
model is similar to the causal case except that the RNN on the observations is

68



zt−1 zt zt+1

−→g z
t−1

−→g z
t

−→g z
t+1

−→g x
t−1

−→g x
t

−→g x
t+1

←−g x
t−1

←−g x
t

←−g x
t+1

xt−1 xt xt+1

zt−1 zt zt+1

xt−1 xt xt+1

Figure 10.4: Graphical model of non-causal RVAE at inference time, in devel-
oped form (left) and compact form (right).

bidirectionnal:

−→g z
t = e−→g z(zt−1,

−→g z
t−1), (10.24)

−→g x
t = e−→g x(xt,

−→g x
t−1), (10.25)

←−g x
t = e←−g x(xt,

←−g x
t+1), (10.26)

gt = [−→g z
t ,
−→g x
t ,
←−g x
t ], (10.27)

[µφ(gt),σφ(gt)] = ez(gt), (10.28)

qφ(zt|z1:t−1,x1:T ) = N
(
zt;µφ(gt),diag{σ2

φ(gt)}
)
, (10.29)

qφ(z1:T |x1:T ) =

T∏
t=1

qφ(zt|z1:t−1,x1:T ). (10.30)

This inference model is represented in Fig. 10.4.

10.3 Training

For the sake of concision and because we focus on reviewing causal DVAEs,
we only describe in this section the VLB for the causal RVAE model, but the
methodology to derive the VLB in the non-causal case is very similar.

Comparing the compact form of causal RVAE in (10.8) with the general
compact form of a DVAE in (4.4) (simplified without u1:T ), we see that the
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causal RVAE model makes the following conditional independence assumptions:

pθx (xt|x1:t−1, z1:t) = pθx (xt|z1:t);

pθz (zt|x1:t−1, z1:t−1) = p(zt). (10.31)

Using these two simplifications along with the inference model (10.23) (which
we recall is consistent with the true posterior), the VLB can be simplified as
follows:

L(θ, φ; x1:T ) =

T∑
t=1

Eqφ(z1:t|x1:T )

[
ln pθx (xt|z1:t)

]
−

T∑
t=1

Eqφ(z1:t−1|x1:T ) [DKL (qφ(zt|z1:t−1,xt:T ) ‖ p(zt))] .

(10.32)

As for previous models, the KL divergence can be computed analytically while
the two intractable expectations are approximated by Monte Carlo estimates us-
ing samples drawn from the joint distributions qφ(z1:t|x1:T ) and qφ(z1:t−1|x1:T )
in a recursive manner.

70



Chapter 11

Disentangled Sequential
Autoencoders (DSAE)

The authors of (Yingzhen and Mandt, 2018) proposed a hierarchical model
called Disentagled Sequential Autoencoder (DSAE). DSAE introduces the idea
of adding to the usual sequence of latent variables z1:T a sequence-level latent
vector v (denoted f in (Yingzhen and Mandt, 2018)), that is assumed to encode
the sequence-level characteristics of the data. Therefore, zt is assumed to encode
time-dependent data features (e.g., the dynamics of an object in a video clip)
and v is assumed to encode “everything else” (e.g., object characteristics in a
video clip).

11.1 Generative model

In (Yingzhen and Mandt, 2018), only the following general form for the gener-
ative DSAE model for a complete data sequence is provided:

pθ(x1:T , z1:T ,v) = pθv (v)

T∏
t=1

pθx (xt|zt,v)pθz (zt|z1:t−1). (11.1)

Very poor information is given about the individual pdfs. However, we learn
a bit more about those pdfs and implementation issues from the annexes in
the ArXiv version of the paper. The authors use different variants for different
datasets according to the nature of the data (basically, video clips or speech
signals). We only report here the model implemented for speech signals. The
dynamical model pθz (zt|z1:t−1) is a Gaussian implemented with an LSTM. The
observation model pθx (xt|zt,v) is a Gaussian implemented with a feed-forward
DNN. With the simplified generic RNN formalism used for LSTM (see Sec-
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Figure 11.1: DSAE’s graphical model in developed (left) and compact (right)
forms.

tion 3.1.1), we thus can write:

ht = dh(zt−1,ht−1), (11.2)

[µθz (ht),σθz (ht)] = dz(ht), (11.3)

pθz (zt|ht) = N
(
zt;µθz (ht),diag{σ2

θz (ht)}
)
, (11.4)

[µθx (zt,v),σθx (zt,v)] = dx(zt,v), (11.5)

pθx (xt|zt,v) = N
(
xt;µθx (zt,v),diag{σ2

θx (zt,v)}
)
. (11.6)

The graphical representation of DSAE is given in Fig. 11.1. This model looks
very much like a DKF in undriven mode conditioned on the variable v, except
that, in addition to this conditioning, the first-order Markov temporal model
of DKF is replaced with a virtually infinite-order model thanks to the LSTM.
Although this is poorly discussed in the DVAE papers in general, this issue is
an example of very interesting model extensions that are easy to implement in
the deep learning and VAE framework.1

11.2 Inference model

For DSAE, the posterior distribution of latent variables is given by:

pθ(z1:T ,v|x1:T ) = pθ(v|x1:T )pθ(z1:T |v,x1:T ) (11.7)

= pθ(v|x1:T )

T∏
t=1

pθ(zt|z1:t−1,v,x1:T ) (11.8)

= pθ(v|x1:T )

T∏
t=1

pθ(zt|z1:t−1,v,xt:T ), (11.9)

1In (Krishnan et al., 2015), the authors mention that “using deep neural networks, we can
enhance Kalman filters with arbitrarily complex transition dynamics and emission distributions.
[...] we can tractably learn such models by optimizing a bound on the likelihood of the data.”
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where the simplification in the last line comes from D-separation. This decom-
position can be interpreted as follows: The whole sequence of observations x1:T

is used to estimate the “object” representation v, and then v, the present and
future observations xt:T , and previous latent state vectors z1:t−1 are used to
update the object dynamics.

As for the variational approximate posterior qφ, the authors of (Yingzhen
and Mandt, 2018) propose two models. The first one, referred to as “factorized”,
is given by:

qφ(z1:T ,v|x1:T ) = qφv (v|x1:T )

T∏
t=1

qφz (zt|xt). (11.10)

This model thus rely on an instantaneous frame-wise inference model qφ(zt|xt)
for the latent vector encoding dynamics. This approach is oversimplistic com-
pared to the true posterior distribution, and leads to reported performances
that are inferior to the ones of the second inference model. We thus focus on
the latter, which is referred to as “full” and is given by:

qφ(z1:T ,v|x1:T ) = qφv (v|x1:T )qφz (z1:T |v,x1:T ). (11.11)

As the authors say, “the idea behind [this] structured approximation is that
content may affect dynamics.” So far, this model is compliant with the true
posterior as expressed by (11.7). If we go now into more details, from the
information given in the annexes of the ArXiv version of the paper, we can
write the detailed equations of the full inference model:

−→g v
t = e−→g v(xt,

−→g v
t−1), (11.12)

←−g v
t = e←−g v(xt,

←−g v
t+1), (11.13)

gv = [−→g v
T ,
←−g v

1 ], (11.14)

[µφv
(gv),σφv (gv)] = ev(gv), (11.15)

qφv (v|x1:T ) = N
(
v;µφv

(gv),diag{σ2
φv

(gv)}
)
, (11.16)

−→g z
t = e−→g z([xt,v],−→g z

t−1), (11.17)
←−g z
t = e←−g z([xt,v],←−g z

t+1), (11.18)

gz
t = [−→g z

t ,
←−g z
t ], (11.19)

[µφz
(gz
t ),σφz (gz

t )] = ez(gz
t ), (11.20)

qφz (zt|v,x1:T ) = N
(
zt;µφz

(gz
t ),diag{σ2

φz
(gz
t )}
)
, (11.21)

and for the full sequence z1:T we have:

qφz (z1:T |v,x1:T ) =

T∏
t=1

qφz (zt|v,x1:T ). (11.22)

We remark that none of the two approximations proposed by the authors (factor-
ized and full) actually follow the dependencies of the true posterior distribution
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of the latent variables shown in (11.9). The graphical representation of the full
inference model is represented in Fig. 11.2.2

11.3 Training

To derive the VLB for the DSAE model, we apply the same strategy as for other
models, i.e., inject the generative model and the approximate posterior in the
general formulation. We do so for the full inference model (11.11) and get:

L(θ, φ,x1:T ) = Eqφ(v,z1:T |x1:T )

[
pθx (x1:T |z1:T ,v)

]
−DKL

(
qφ(v, z1:T |x1:T )

∥∥∥pθ(v, z1:T )
)

(11.23)

= Eqφv (v|x1:T )

[
T∑
t=1

Eqφz (zt|v,x1:T )

[
ln pθx (xt|zt,v)

]
−DKL(qφz (zt|v,x1:T )‖pθz (zt|z1:t−1))

]
−DKL(qφv (v|x1:T )‖pθv (v)). (11.24)

Therefore, one must first compute qφv (v|x1:T ) to then sample from it. Once
this is achieved, the parameters of qφz (zt|v,x1:T ) for all t can be computed,
without sampling from any random variable. Once this is achieved, then samples
from zt−1 as well as from zt are used to compute the t-th KL divergence term
in (11.24).

2Note that in (Yingzhen and Mandt, 2018), Appendix A, the schematic representation of the
inference model given in Fig. 9(b) is not consistent with the following sentence (reported with our
notations): “Finally the parameters of qφ(z1:T |v,x1:T ) are computed by a simple RNN with input
[−→g z

t ,
←−g z
t ] at time t.” It is indeed inconsistent and a bit strange that zt−1 is not mentioned as

an input of the zt inference process, as is well apparent on Fig. 9(b). We base the writing of
(11.19)–(11.21) on their text and not on their figure.
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Figure 11.2: Graphical model of DSAE at inference time, in developed form
(top) and compact form (bottom). In addition to the missing arrows shown in
gold, we display in silver the arrows that should not be used, as compared to
the structure of the true posterior. To our knowledge, DSAE is the only model
that uses probabilistic dependencies not appearing in the true posterior.
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Chapter 12

A rapid tour of other
models

In this section, we rapidly present a few other models that have also been
recently proposed in the literature and that are members of the family of dy-
namical VAEs. We choose to not present them in a detailed manner as in the
previous sections, because they are either too far from the spirit of the review,
that focuses on models associating a sequence of observations with a sequence
of latent variables, or too close to already presented models.

12.1 Models connected to the DKF model

Latent (switching) LDS and Structured VAE: The authors of (Johnson
et al., 2016) consider several models. One of them is a simplified DKF where
the latent variable model (i.e., the dynamical model) is a linear-Gaussian, that
is it follows (3.16) (with ut following a standard Gaussian distribution), while
the observation model is a DNN-based non-linear model similar to the DKF
observation model. They called it a Latent LDS. They extend this model to
a Latent Switching LDS model that is based on a bank of dynamical models
(actually the same linear dynamical model as above but with different parame-
ters) and an additional discrete latent variable that controls the switch between
the dynamical models over time to adjust to the observed data dynamics. This
model can be seen as an extension of the Switching Kalman Filter (Murphy,
1998; Fox et al., 2011) to a DNN-based observation model; see also (Linderman
et al., 2016) for a similar combination. The authors of (Johnson et al., 2016) do
not provide detailed equations for these models. Rather, they show how the use
of structured mean-field approximation in the inference model combined with
the use of an observation model that is conjugate to the latent variable model
can make the inference and training processes particularly efficient. They call
the resulting model a structured VAE (SVAE). Since they provide those de-
velopments in the general framework of probabilistic graphical models (Koller
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and Friedman, 2009), which is more general that the DVAE framework, they do
not provide “temporal equations.” This makes this paper somehow poorly con-
nected to our review, in spite of its strong interest. For example, although they
clearly mention that the DKF paper (Krishnan et al., 2015) is strongly related
to their work, they also imply that using RNN models for implementing time
dependencies is a bit restrictive in the general framework that they present.

Black-box deep SSM: In a similar spirit, the authors of (Archer et al., 2015)
also focus on the structure of the approximate posterior distribution to improve
the computational efficiency of the inference. They propose to use a multivari-
ate Gaussian approximate posterior with block tri-diagonal inverse covariance
matrix. They also propose a corresponding inference algorithm that is fast and
scalable. This general approach can be applied with different (deep and non-
deep) parameterizations of the inference model, and is applicable to a large
family of SSMs (hence the “black box” denomination in the paper title). The
authors mainly focus and experiment on a Linear-Gaussian LDS,1 an LDS with a
linear-Poisson observation model (which has no closed-form inference solution),
and a basic one-dimensional non-linear LDS. This work is well connected with
the DKF model, as the authors themselves mention in their paper, and with
deep SSMs in general. Interestingly, in this work which, again, focuses more on
the inference model than on the generative model, only the inference model is
deep whereas the generative models used in the experiments are non-deep.

Deep Variational Bayesian Filters: We have already mentioned this class
of models in Section 6.1. DVBFs, which were proposed in (Karl et al., 2017),
extend the class of SSM-based DVAE models with dynamical models that de-
pend on stochastic parameters. For example, the transition model at time t (i.e.,
between zt and zt+1) can be a linear Gaussian model with matrices and vectors
that are a weighted sum of matrices/vectors randomly selected in a predefined
set (possibly learned from data) with weights that are provided by a DNN. A
similar transition model was applied within the KVAE model in (Fraccaro et al.,
2017), see also (Watter et al., 2015).

Disentangled SSM: The authors of (Miladinović et al., 2019) recently pro-
posed a model called Disentangled State Space Model (DSSM) that is in the
line of the DSAE model and, more generally, of models that attempt to sepa-
rate the encoding of the content/object at the sequence level from the encoding
of its dynamics at the time frame level. However, in contrast to DSAE where
the sequence-level latent variable conditions the observation model, in DSSM
this sequence-level variable conditions the dynamical model: It is assumed to
model the fact that the dynamics of an object are dependent on the considered
applicative domain, e.g., enzyme kinetics or bouncing ball kinematics. In others

1to show that their algorithm can efficiently recover the solution of the Kalman filter; In fact,
the block tri-diagonal structure of their inference model is inspired by the Kalman solution.

77



words, (11.1) for DSAE is basically reshaped in DSSM as:2

pθ(x1:T , z1:T ,v) = pθv (v)pθz (z0)

T∏
t=1

pθx (xt|zt)pθz (zt|zt−1,v). (12.1)

Note that here, the dynamical model is a (conditioned) order-1 model. The
authors of (Miladinović et al., 2019) also propose a filtering inference model that
is implemented in the more general DVBF framework mentioned just above.

12.2 Models connected to STORN, VRNN and
SRNN

VRAE: The Variational Recurrent Autoencoder (VRAE) model presented in
(Fabius and van Amersfoort, 2014) can been seen as a simplified version of
STORN, from which, according to the authors themselves, it took inspiration:
Here we have a sequence of data x1:T that is encoded by a single latent random
vector z, instead of a sequence z1:T . The generative process can be summarized
by:

pθ(x1:T , z) = pθz (z)

T∏
t=1

pθx (xt|x1:t−1, z), (12.2)

No information is given in (Fabius and van Amersfoort, 2014) about pθz (z).
pθx (xt|x1:t−1, z) is implemented with a forward RNN that uses z to calculate
the first hidden state h1 and then iteratively takes xt−1 as input to calculate
ht which provides the parameters of the distribution of xt. Conversely, the
inference model qφz (z|x1:T ) is also based on a forward RNN that takes as input
the sequence x1:T and delivers a final internal state gT from which we obtain
the distribution parameters for z. In short, the VRAE generative model can be
represented by Fig. 7.1 where the sequence z1:T is replaced with a single input
z for h1, and the VRAE inference model can be represented by Fig. 7.2 where
the sequence z1:T is replaced with a single output z for gT . We thus have a
sequence-to-one encoding and a one-to-sequence decoding, that strongly evokes
the models designed for text/language processing mentioned in the introduction.
Since (Fabius and van Amersfoort, 2014) was published in 2014 and is part of
the early papers on DVAEs, this paper was probably very inspiring for the NLP
community.

A very similar model was proposed in (Babaeizadeh et al., 2018), four
years after (Fabius and van Amersfoort, 2014),3 the difference being that in
(Babaeizadeh et al., 2018) several vectors xt:T are predicted from the past con-
text x1:t−1 and from the unique latent vector z. The inference model is also of
the form qφz (z|x1:T ) as in (Fabius and van Amersfoort, 2014). The authors of

2In (Miladinović et al., 2019), the sequence-level variable is denoted D for “domain.” We keep
the notation v as for our description of DSAE for consistency.

3(Fabius and van Amersfoort, 2014) is not cited in (Babaeizadeh et al., 2018).
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(Babaeizadeh et al., 2018) compare this model with a more conventional model
where the latent vector is defined on a frame-by-frame basis, i.e., zt (basically
the observation model of this baseline model is similar to the one of SRNN and
the prior over zt is an i.i.d. standard Gaussian distribution).

FHVAE: A Factorized Hierarchical Variational Autoencoder (FHVAE) is pro-
posed in (Hsu et al., 2017b), which learns disentangled and interpretable latent
representations from sequential data without supervision by explicitly model-
ing the multi-scaled aspect of the temporal information contained in the data.
This is done by splitting each sequence of data vectors into a set of consecutive
sub-sequences of fixed size (called segments), and defining two latent variables
z and v at the segment level.4 The former is dedicated to capture the data
information at the segment level, whereas the latter is dedicated to capture the
data information across segments, that is at the sequence level. This model is
particularly appropriate for speech signals: In that case, 200-ms segments rep-
resent the approximate duration of a syllable, and thus z would typically encode
phonetic information, whereas v would typically encode speaker information at
the level of a complete utterance. In spirit, FHVAE is strongly connected to
DSAE which also contains a sequence-level latent variable v but preserves a
time-frame resolution for the dynamical latent variable zt (see Section 11); in
fact DSAE was published after FHVAE from which it probably inspires.

Even if we do not deeply detail this model, we report a few equations to
help better understand how the segmental modeling works. Let here t ∈ [1, T ]
denote the index of a vector within a segment (each segment has T vectors),
and let n ∈ [1, N ] denote the index of segment within a sequence. The FHVAE
observation model for each individual segment of data is given by:

h
(n)
t = dh(z(n),v(n),h

(n)
t−1), (12.3)

[µθx (h
(n)
t ),σθx (h

(n)
t )] = dx(h

(n)
t ), (12.4)

pθx (x
(n)
t |h

(n)
t ) = N

(
x

(n)
t ;µθx (h

(n)
t ),diag{σ2

θx (h
(n)
t )}

)
. (12.5)

In (12.3), z(n) and v(n) respectively denote the latent vectors z and v for
the considered n-th segment. Note that there is one single pair of such vec-
tors for each segment, hence a many-to-one encoding and one-to-many de-
coding at the segment level. In practice, those equations are implemented
with an LSTM network. The prior distribution of z(n), pθz (z(n)), is a cen-
tered isotropic Gaussian that is independent of both the segment and the se-
quence. In contrast, the prior distribution of v(n) depends on a latent variable
w which is defined at the sequence level, and which prior distribution pθw (w)

is also a centered isotropic Gaussian. The distribution of v(n) is then given by
pθv (v(n)|w) = N (v(n); w, σ2

θv
ILv ). For a given sequence, pθv (v(n)|w) depends

on the value of w drawn for that particular sequence. In practice, all generated
v(n) vectors within a sequence are close to w. This makes v(n) a sequence-

4In (Hsu et al., 2017b), z and v are respectively denoted z1, z2. We changed the notation to
avoid confusion between variable index and time index.
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dependent latent factor, whereas z(n) will behave as a segment-dependent and
sequence-independent latent factor. The joint density of a sequence is given by:

pθ(x
(1:N)
1:T , z(1:N),v(1:N),w) = pθw (w)

N∏
n=1

T∏
t=1

pθx
(
x

(n)
t |ht(z(n),v(n))

)
pθz (z(n))pθv (v(n)|w), (12.6)

where, as in the previous sections, ht
(
z(n),v(n)

)
is a shortcut for the function

that results from unfolding the recurrence in (12.3).
The inference model is a many-to-one encoder that works at the segment

level: each segment x
(n)
1:T is encoded into a pair {z(n),v(n)} (plus an estimate of

w for each whole sequence). As for the variational approximate posterior qφ,
the authors of (Hsu et al., 2017b) propose the following model:

qφ
(
z(1:N),v(1:N),w|x(1:N)

1:T

)
= qφw (w)

N∏
n=1

qφz

(
z(n)|x(n)

1:T ,v
(n)
)
qφv

(
v(n)|x(n)

1:T

)
,

(12.7)

where qφz and qφv are both implemented with a forward LSTM network (which
last state vector is passed to a DNN network to provide the distribution pa-
rameters). Note that two encoders are chained here: The first one is used to

generate v(n) (by sampling qφv

(
v(n)|x(n)

1:T

)
). Then v(n) is injected in the second

encoder to generate z(n). As for qφw (w), it is a Gaussian distribution which
mean vector is taken from a look-up table that is jointly learned with the model
parameters (see (Hsu et al., 2017b) for details). Cascading the sequence-to-one
encoder with the one-to-sequence decoder results in a sequence-to-sequence neu-
ral network architecture that is trained by maximizing the VLB (not detailed
here). Note that the model can be optimized at the segment level instead of at
the sequence level, that is each data segment can be used as a batch dataset.
According to the authors of (Hsu et al., 2017b), this can solve scalability issues
when training sequences become too long.

DRAW: A somehow dual model of (Fabius and van Amersfoort, 2014) has
been proposed in (Gregor et al., 2015) and called DRAW for Deep Recurrent
Attentive Writer: DRAW considers a sequence of latent vectors z1:T to encode
a single static but highly structured data x (a digit image or a low-resolution
CIFAR image). The generative model is of the general form pθx (x|z1:T ). Even if
there is only a single observation x, the generative process involves the iterative
construction of a sequence x̂1:T that can be seen as the sequence of images
resulting from the “natural” drawing of x over time. The dependency of x on
z1:T is implemented by combining the output of a decoder RNN (which takes zt
as input) and a so-called canvas matrix ct−1 that encodes the difference between
the final target image x and the current draw x̂t−1. Hence the model combines
deep learning and some form of predictive coding (Gersho and Gray, 2012).
The inference model is of the form qφz (zt|z1:t−1,x) and is implemented with

80



an encoder RNN. This network takes as inputs a combination of x, x̂t−1 and
the output of the decoder at previous time step, hence the predictive coding
is implemented in close-loop mode (Gersho and Gray, 2012). As the name
indicates, DRAW includes a selective attention model that enables the model
to focus on the most relevant parts of the observation. The description of such
attention model is out of the scope of the present review, see (Gregor et al.,
2015) and references therein for details.

NASMC: The authors of (Gu et al., 2015) propose a generative model called
Neural Adaptive Sequential Monte Carlo (NASMC) that is very close to STORN.5

It can also be seen as a simplified version of VRNN or SRNN. The inference
model has the same general form as VRNN, i.e., it follows (8.14), and it is pa-
rameterized by an RNN. The originality of this paper is to connect the DVAE
inference framework with sequential Monte Carlo (SMC) sampling. The infer-
ence model is used as a proposal distribution for SMC sampling. In fact, a
complete framework to learn the parameters of the generative model, the pro-
posal model, and for sampling from the true posterior with SMC is proposed.
In other words, the authors of (Gu et al., 2015) show that their sampling-based
approach can be used to optimize the observed data marginal likelihood, for
estimating the generative model parameters in the variational framework.

RSSM: The authors of (Hafner et al., 2018) use a model that they refer to
as Recurrent SSM (RSSM) but that is actually identical to VRNN used in
driven mode (i.e., with an external input ut, that is denoted at−1 in (Hafner
et al., 2018), to feed ht, instead of reinjecting xt−1 into ht). They use this
driven-VRNN for planning actions from image sequence observations, in a re-
inforcement learning framework. Interestingly, they also present a way to do
multi-step prediction, that is prediction several steps ahead.

12.3 Other models

FVAE: The authors of (Deng et al., 2017) propose a model called Factorized
VAE (FVAE) that combines the VAE with tensor factorization (Kuleshov et al.,
2015; Huang et al., 2016), this latter being applied on the latent vector z. Since
one of the dimension of the tensor factorization is discrete time, this model
implicitly involves data dynamics modeling. However, the temporal patterns
are sampled from a standard log-normal distribution, hence independently over
time, and data decoding is also processed independently at every time frame.
It is thus unclear how the temporal dynamics are actually encoded.

5In the supplementary material to the paper, they break the dependency between zt−1 and zt
that is set in the main text of the paper, and thus the model becomes identical to STORN.
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Chapter 13

Experiments

In the following, we present an experimental benchmark of the seven DVAE
models that we detailed in the previous chapters. We showcase this benchmark
with the task of speech analysis-resynthesis, that is encoding and reconstructing
speech signals, that here will play the role of the data x1:T , encoded into, and
resynthesized from, a latent vector sequence z1:T . We first specify in Section 13.1
the implementation of each model. We then describe the experimental protocol,
dataset, model training and evaluation metrics in Section 13.2. Finally, we
provide and discuss the obtained results in Section 13.3.

13.1 Implementation of the DVAE models

In this section, we specify the implementation for each DVAE. We have tried
to find a good trade-off between respecting the architecture of the models as
described in the original papers and ensuring a fair comparison between models.
For this latter aim, we tried our best to have the same design choices when pos-
sible. Therefore, rather than using the same dimensions and hyper-parameters
as presented in the original papers, we set some parameters to be equal among
all models, and chosen specifically for the speech analysis-resynthesis task. We
first describe the parameters common to all models, and then we focus on the
specifics of each model.

We use the following specifications common to all DVAEs:

• None of the DVAEs is used in driven mode, that is there is no external
input u1:T for all models. The DVAEs proposed in predictive mode in the
literature are used in predictive mode in our experiments as well;

• The dimension of the observation vector xt is set to 257 (see the speech
data pre-processing in Section 13.2);

• The dimension of the latent vector zt is set to 16;
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• Unless specified, the dimension of hidden internal state vectors (ht or gt)
is set to 128;

• Unless specified in the original paper, all RNNs are instantiated as LSTM
networks;

• For all variance parameters at the output of a network, we use log-parameterization
(i.e., the output of network corresponding to a variance parameter σ2 is
actually log σ2).

In the following, we provide full specification for each model. As done previ-
ously when presenting each DVAE, we will first present the generation network
(decoder) and then the inference network (encoder). Since many of the net-
works are multi-layer perceptrons (MLP), we define a notation to refer to these
architectures concisely: MLP(y, n1, f1, . . . , nL, fL) refers to a L-layer MLP
with input y, and n` and f` denote the output dimension and the (element-wise)
activation function of the `-th layer respectively. Possible activation functions
are: rectified linear unit (ReLU), sigmoid (Sigmoid), hyperbolic tangent (Tanh)
and linear I. Importantly, the last layer of the networks computing the param-
eters of the random variables xt or zt, whether they are the output of an MLP
or of a RNN, is always linearly activated and will not be made explicit for the
sake of concision. For example, if we define the generative network for zt as
MLP(ht, 64, Sigmoid, 32, Sigmoid), this means that we use an MLP with two
hidden layers of dimension 64 and 32, both with Sigmoid activation function,
and an output layer with dimension 2× 16 (for mean and log-variance vectors,
which are both the same size as zt) with linear activation.

13.1.1 DKF

Generation: Following (Krishnan et al., 2017), we used a gated transition
function to implement dz in (3.9):

νt = MLP(zt−1, 16,ReLU, 16,Sigmoid) (13.1)

µnonlin
t = MLP(zt−1, 16,ReLU, 16, I) (13.2)

µlin
t = MLP(zt−1, 16, I) (13.3)

µθz (zt−1) = (1− νt)� µlin
t + νt � µnonlin

t (13.4)

σ2
θz (zt−1) = MLP(ReLU(µnonlin

t ), 16,Softplus), (13.5)

where � denotes element-wise multiplication. Note that µθz (zt−1) is a gated
combination of a linear and a non-linear estimate of the mean vector, and the
non-linear estimate is also used to compute the variance σ2

θz
(zt−1).

As for the generation of xt, dx(zt) in (3.11) is implemented with an MLP(zt,
32, Tanh, 64, Tanh, 128, Tanh, 256, Tanh).

83



Inference: We implemented the deep Kalman smoother (DKS) inference model
of (Krishnan et al., 2017), which follows equations (5.4)–(5.7). e←−g is imple-
mented using a backward LSTM fed with an MLP(xt, 256, Tanh). In order to
keep consistent structure for the links between different variable, the affine func-
tion of z in (5.4) is replaced with a two-layer MLP(zt−1, 32, Tanh, 64, Tanh).
ez(gt) is implemented with an MLP(gt, 64, Tanh, 32, Tanh).

13.1.2 KVAE

We recall that the KVAE model consists of a combination of a VAE and an
LG-LDS (Linear-Gaussian Linear Dynamical System). Therefore, the imple-
mentation of KVAE is a bit specific. In practical training, the internal state
sequence a1:T is inferred from data input x1:T frame by frame with a consistent
encoder network. Then a1:T is considered as the observation of the LG-LDS,
which is solved with the Kalman filter (that computes p(zt|a1:t,u1:t)) or with
the Kalman smoother (that computes p(zt|a1:T ,u1:T )). We use the former in
our experiments, which are set in predictive mode, i.e., we set ut = at−1. These
posterior distributions on zt are then used to compute the most likely value of
at, denoted by ãt, see (3.17). Finally, x1:T can be generated from ã1:T frame
by frame with a consistent decoder network.

VAE: The VAE encoder of KVAE, that is (6.5), is implemented as an MLP(xt,
256, Tanh, 128, Tanh). The associated decoder, that is (6.15), is implemented
as an MLP(at, 128, Tanh, 256, Tanh).

LG-LDS: The solution to the LG-LDS part of KVAE is obtained with the
Kalman smoother, see (Murphy, 2012, Section 18.3) or (Bishop, 2006, Section
13.3). Moreover, in KVAE, the LDS parameters are actually a linear combi-
nation of LDS parameters taken in a predefined parameter bank of K LDSs
{A(k),B(k),C(k)}Kk=1. This enables the KVAE to smoothly switch from one
dynamical mode to another over time. Formally, we have:

At =

K∑
k=1

α(k)(a0:t−1)A(k) (13.6)

Bt =

K∑
k=1

α(k)(a0:t−1)B(k) (13.7)

Ct =

K∑
k=1

α(k)(a0:t−1)C(k), (13.8)

where α(k)(a0:t−1) is a normalized weight obtained with an LSTM network
with input at−1 and internal state of dimension 50, followed by a Softmax
function. The parameters of this LSTM are learned during the KVAE training,
as the other parameters. For the training, all matrices A(k) are initialized as
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an identity matrix, all matrices B(k) and C(k) are initialized randomly with
a scaled Gaussian sampling, Λ and Σ are initialized as isotropic matrix with
pre-defined scale values, a0 is zero-initialized.

Training procedure In the original paper, once all the weights and parame-
ters are initialised, there is a two-step training procedure. First, the parameters
of the VAE are trained, keeping the random initialisation of the LG-LDS param-
eters constant. Second, a joint VAE LG-LDS training step is run. Important
note: At the time of first release of this review paper, we did not manage to
achieve satisfactory training convergence of the KVAE model with this strategy
in our experiments, and therefore we will not report the results for this model
for the time being.

13.1.3 STORN

Generation: We first recall that in STORN the prior of z1:T is an i.i.d.
standard Normal distribution, it is sampled without needing a network. As
for ht, dh(xt−1, zt,ht−1) in (7.4) is implemented with the concatenation of an
MLP(xt−1, 256, Tanh) and an MLP(zt, 32, Tanh, 64, Tanh) (which can both
be considered as feature extractors), followed by a forward LSTM network. As
for xt, dx(ht) in (7.5) is implemented with an MLP(ht, 256, Tanh).

Inference: eg(xt,gt−1) in (7.15) is implemented with an MLP(xt, 256, Tanh)
followed by a forward LSTM network. ez(gt) in (7.16) is implemented with an
MLP(gt, 64, Tanh, 32, Tanh).

13.1.4 VRNN

We recall that, unlike STORN, VRNN employs a shared RNN for inference
and generation, with internal state vector ht. Furthermore, VRNN explicitly
introduces feature extractors for xt and zt, and uses the extracted features to
feed the different encoder and decoder modules.

Feature extraction: ϕx(xt) is an MLP(xt, 256, Tanh) and ϕz(zt) is an
MLP(zt, 32, Tanh, 64, Tanh).

Generation: dh(ϕx(xt−1), ϕz(zt−1),ht−1) in (8.1) is implemented with an
LSTM network with input [ϕx(xt−1), ϕz(zt−1)]. dz(ht) in (8.4) is implemented
with an MLP(ht, 64, Tanh, 32, Tanh). dx(ϕz(zt),ht) in (8.2) is implemented
with an MLP([ϕz(zt),ht], 256, Tanh).

Inference: ez(ϕx(xt),ht) in (8.11) is implemented with an MLP([ϕx(xt),ht],
128, Tanh, 64, Tanh).
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13.1.5 SRNN

We recall that, as VRNN, SRNN shares an internal recurrent state vector ht
between the generation and inference models.

Generation: dh(xt−1,ht−1) in (9.1) is implemented with an LSTM network
with input MLP(xt−1, 256, Tanh). dz(zt−1,ht) in (9.4) is implemented with an
MLP([zt−1,ht], 64, Tanh, 32, Tanh). dx(zt,ht) in (9.2) is implemented with an
MLP([zt,ht], 256, Tanh).

Inference: e←−g ([ht,xt],
←−g t+1) in (9.10) is a backward LSTM network with

input MLP([ht,xt], 256, Tanh). ez(zt−1,
←−g t) in (9.11) is an MLP([zt−1,

←−g t],
64, Tanh, 32, Tanh).

13.1.6 RVAE

As STORN, RVAE assumes an i.i.d. standard Gaussian prior for z1:T , so no
network is needed to generate zt. We recall that RVAE has a causal and a
non-causal version, depending on whether the generation of xt uses zt+1:T or
not.

Generation: Regarding the causal case, dh(zt,ht−1) in (10.4) is a forward
LSTM network with input MLP(zt, 32, Tanh, 64, Tanh), and dx(ht) in (10.5)
is an MLP(ht, 256, Tanh). For the non-causal case, the generation of ht in
(10.9)–(10.11) is implemented with a bi-directional LSTM with the same input
as in the causal case, and dx(ht) is also the same.

Inference: In the causal case, e−→g (zt−1,
−→g t−1) in (10.18) is a forward LSTM

network with input MLP(zt−1, 32, Tanh, 64, Tanh), e←−g (xt,
←−g t+1) in (10.19)

is a backward LSTM network with input MLP(xt, 256, Tanh), and ez(gt) in
(10.21) is an MLP([−→g t,

←−g t], 64, Tanh, 32, Tanh). In the non-causal case, e−→g z

in (10.24) and e←−g x in (10.26) follow the same architecture as e−→g and e←−g in
the causal inference model, respectively, and e−→g x in (10.25) is a forward LSTM
with input MLP(xt, 256, Tanh).

13.1.7 DSAE

We recall that, compared to the other models, DSAE has a extra sequence-level
latent variable v. We assume that v has the same dimension as zt. Since the
total dimension of z1:T is T times the dimension of zt, introducing this extra
latent variable v will not change much the total number of latent variables.
Therefore we can still consider it is fair to compare DSAE to the other models
in such configuration. The generation of v is not detailed in the original paper,
and we assume it follows a standard Gaussian distribution.
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Generation: dh(zt−1,ht−1) in (11.2) is a forward LSTM network with hidden
layer of dimension 32,1 and dz(ht) in (11.3) is a one-layer linear network to
project the dimension of ht onto the dimension of zt. dx(zt,v) in (11.5) is an
MLP([zt,v], 32, Tanh, 64, Tanh, 128, Tanh, 256, Tanh).

Inference: As for the inference of v, Eqs. (11.12)–(11.15) are implemented
with a bi-directional many-to-one LSTM network with input MLP(xt, 256,
Tanh) and output gv, followed by an MLP(gv, 64, Tanh, 32, Tanh). As for
the inference of zt, Eqs. (11.17)–(11.19) are implemented with a bi-directional
LSTM with input MLP([v, MLP(xt, 256, Tanh)], 256, Tanh). Finally, ez(gz

t )
in (11.20) is an RNN with hidden layer of dimension 32.

13.2 Experimental Protocol

13.2.1 Dataset and preprocessing

For the present speech analysis-resynthesis task, we used the Wall Street Journal
(WSJ0) dataset (Garofolo et al., 1993), which consists of read speech from Wall
Street Journal news. We used the speaker-independent, medium (5k words)
vocabulary subset of the corpus. More precisely, the “si tr s” subset (around 25
hours) was used for training, the “si dt 05” subset (around 2 hours) was used
for validation, and the “si et 05” subset (around 1.5 hours) was used for test.

The raw speech waveform was sampled at 16 kHz. Analysis-resynthesis was
processed with the DVAEs in the time-frequency domain. To this aim, the
speech signals were preprocessed with the short-time Fourier transform (STFT)
using a 32-ms sine window (512 samples) with 50%-overlap to obtain sequences
of 257-dimensional discrete Fourier spectra (for positive frequencies). We set
T = 150, meaning that speech utterances of 2.4 s were extracted from the raw
dataset and pre-processed with the STFT. In summary, each speech sequence
is a 150× 257 STFT spectrogram. This data preprocessing resulted in a set of
Ntr = 13, 272 training sequences (about 9 hours of speech signal) and Nval =
2, 143 validation sequences (about 1.5 hour). For the test, we use the STFT
spectrogram of each complete test sequence (with beginning and ending silence
portions removed), which can be of variable length, most often larger than
2.4 s. The corresponding data subsets will be denoted by Dtr, Dval and Dte.
This means that Dtr = {xtr,n

1:T }
Ntr
n=1.

As discussed in (Leglaive et al., 2020) and already briefly mentioned in Sec-
tion 10.1, the complex-valued STFT coefficients are modeled with a zero-mean
circular complex Gaussian distribution, see (10.2), whereas zt is modeled as
usual with a real-valued Gaussian distribution. In practice, the data sequence
x1:T processed by the DVAE models is the squared-magnitude of the STFT
spectrogram, i.e., a (real-valued non-negative) power spectrogram. The corre-
sponding phase spectrogram is directly combined with the DVAE output mag-
nitude spectrogram to reconstruct the output speech signal using inverse STFT

1Here we set 32 and not 128 because ht is an internal state vector of an RNN with input zt.
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with overlap-add. Modeling the STFT coefficients with a zero-mean circular
complex Gaussian distribution with variance σ2

θx ,f,t
(·)2 amounts to model each

entry xf,t of the power spectrogram x1:T with a Gamma distribution with shape
parameter 1 and scale parameter σ2

θx ,f,t
(·), i.e., xf,t ∼ G(1, 1/σ2

θx ,f,t
(·)). This

also amounts to use the Itakura-Saito distance between xf,t and σ2
θx ,f,t

(·) in the

reconstruction term of the VLB, see (Girin et al., 2019). We remind that all
presented DVAE models are very versatile regarding the output data conditional
pdf model, and using a Gamma distribution (more appropriate for speech/audio
power spectrograms) in place of the Gaussian distribution that was used in the
generic presentation of the models does not present any problem. We can note
that the linear layer estimating the parameters of xt has 257 output units cor-
responding to the log-variance parameters {lnσ2

θx ,f,t
(·)}Ff=1.

13.2.2 Training and testing

All the tested models were implemented in PyTorch (Paszke et al., 2019).3 In
order to train the models we used mini-batch stochastic gradient descent, in
particular the Adam optimizer (Kingma and Ba, 2014), with a learning rate of
0.0001 and a batch size of 32. We also use early stopping on the validation set
with a patience of 20 epochs. Once a model is trained on the training set, with
early stopping on the validation set, its weights are fixed, and the model is run
on the test set. We then report the average performance on the test set using
the metrics presented in the next subsection.

13.2.3 Evaluation metrics

We used three metrics to evaluate the resynthesized speech quality and com-
pare the performance of the different DVAE models: The root mean squared
error (RMSE) between the original and reconstructed waveforms, Perceptual
Evaluation of Speech Quality (PESQ) scores (Rix et al., 2001) and Short-Time
Objective Intelligibility (STOI) scores (Taal et al., 2010). The amplitude of each
original speech waveform is normalized in [−1, 1], so the RMSE is (positive and)
generally much lower than 1, it directly represents a percentage of the maximum
amplitude value. PESQ scores are in [−0.5, 4.5] and STOI scores are in [0, 1].
For both, the higher the better.

13.3 Results

We first present the loss curves (i.e., VLB up to a constant term) obtained
on the training data and the validation data in Fig. 13.1. Those curves will
lead to believe that the training procedure has successfully converged for all the
implemented DVAE models. We observe certain differences in the convergence

2Here we do not specify the variables generating the variance, since they depend on the DVAE
model. Instead, the subscripts indicate frequency bin f and time frame t.

3The code will be made freely available for non-commercial purposes.
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DVAE RMSE PESQ STOI

VAE 0.0510 2.05 0.86
DKF 0.0344 3.30 0.94
STORN 0.0338 3.05 0.93
VRNN 0.0267 3.60 0.96
SRNN 0.0248 3.64 0.97
RVAE-Causal 0.0499 2.27 0.89
RVAE-NonCausal 0.0479 2.37 0.89
DSAE 0.0469 2.32 0.90

Table 13.1: Performance of the tested DVAE models in our speech analysis-
resynthesis experiment. The RMSE, PESQ and STOI scores are averaged over
the test subset of the WSJ0 dataset.

behavior of the different models, but a thorough examination of these aspects
is beyond the scope of this paper.

The values of the three metrics described in the previous section averaged
over the above-described test dataset at the end of model training are reported
in Table 13.1. From this table, we can draw the following comments:

• All DVAE models outperform the standard VAE model. This demon-
strates the interest of including temporal modeling in the VAE framework
for modeling sequential data such as speech signals.

• VRNN and SRNN are the two methods with highest performance, with a
notable gain in performance over all other models, and SRNN is slightly
better than VRNN. By looking at the associated probabilistic models,
we can observe that both SRNN and VRNN contain many dependencies
with the past observed and latent variables, in contrast to the other im-
plemented DVAEs, which only depend mildly on the past observed and
latent variables. We believe that these dependencies allow VRNN and
SRNN to better capture the temporal patterns associated to the speech
signal.

• When it comes to SRNN performing slightly better than VRNN, this could
be due to the fact that the inference model of SRNN respects the structure
of the true posterior while the inference model of VRNN (as proposed in
the original paper) does not. Indeed, in both cases the true posterior
of any latent variable zt depends on all observations x1:T . However, the
inference model of VRNN (as presented in the original paper) takes into
account only the causal observations x1:t.

• The performances of DKF and STORN are quite equivalent, but below
those of SRNN and VRNN. This is likely due to the fact that the tem-
poral dependencies in DKF and STORN are less rich than in VRNN and
SRNN. DKF is an SSM-like model, where there is no explicit temporal
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dependency between xt−1 and xt, but only between zt−1 and zt. Some-
how it is the other way round for STORN. In fact, in STORN xt depends
on x1,t−1 and z1:t, so one could think that this model is richer that DKF
and should have better performance. However, we found out that DKF
slightly outperforms STORN in terms of PESQ and STOI (but not in
RMSE). We can hypothesize that, as for SRNN vs. VRNN, the differ-
ence in performance between DKF and STORN is (at least partly) due
to the fact that the inference model of DKF does respect the structure
of the true posterior distribution whereas the inference model of STORN
does not (for STORN, the inference of zt depends only on x1:t and not
on zt−1 nor xt+1:T ). Another possible explanation for the differences in
performance between DKF and STORN is that the prior distribution of
the latent vectors {zt}Tt=1 is i.i.d. in STORN, while it has temporal depen-
dencies in DKF. In a general manner, we hypothesize that models with
i.i.d. prior over time risk to underperform w.r.t. models that have a prior
temporal model on zt or that are defined via a temporal generative model
of zt (like VRNN and SRNN). This is because the z1:T sequence is as-
sumed to encode high-level characteristics of the data x1:T that generally
evolve smoothly over time (at least for some of these characteristics). This
is not ensured by the i.i.d. standard Gaussian prior distribution of zt used
in STORN.

• The performance of DSAE is quite deceiving, especially compared to the
performance of DKF. Indeed, as DKF, DSAE is also an SSM-like model.
Actually, DSAE can be seen as an improved version of DKF, with an ad-
ditional sequence-level variable v and infinite-order temporal dependency
of zt (as opposed to order-1 for DKF). Again, this poor performance could
come from the structure of the inference model. In particular, for DSAE,
the inference model of zt depends on x1:T , whereas the true posterior de-
pends on z1:t−1 and xt:T . So the inference model of DSAE is not only
missing some dependencies it should have (previous latent variables), but
it is adding dependencies that it should not have (previous observed vari-
ables).

• As for RVAE, this model exhibits the worst performance of all the imple-
mented DVAE models. Here also, i.i.d. modeling of zt may be suboptimal.
In addition to that, there is no explicit modeling of the temporal depen-
dencies on xt (e.g., xt does not depend on xt−1), hence leading to a model
with weak “predictive power.” The non-causal version of RVAE is slightly
better than the causal version, which was expected. We can note that
(causal) RVAE is only slightly better than VAE in terms of RMSE. How-
ever, even if still small, the difference with VAE is a little bit larger in
terms of PESQ and STOI, so RVAE does capture some part of the speech
dynamics, but in a quite limited extend.

As a conclusion on these experiments, we may say that in a practical appli-
cation requiring the modeling of speech spectrograms, one should chose VRNN

90



or SRNN. Also, at the light of the above results and associated discussion, we
suspect that having an inference model that respects the true variable depen-
dencies at inference time is very important for obtaining optimal performance.
Of course, this is not always possible, since some applications require a causal
inference model for online processing.

We insist on the fact that the above “model ranking” is valid only for the
presented experiments, which consist of pure analysis-resynthesis of speech spec-
trograms. For other tasks such as speech signal generation (from new values of
the latent vectors) or speech signal transformation (with modification of the la-
tent vectors), we cannot tell so far how the implemented models will behave. In
particular, it is very difficult to know how much of the information about x1:T ,
and what kind of information, is encoded into z1:T , and in particular, we do
not know about the “disentanglement power” of each model. And importantly,
there is no clear methodology to address those issues, i.e., evaluate the generated
data and the representation power of the latent variable. Those points will be
rediscussed more extensively in Section 14. Experiments dedicated to illustrate
them are clearly out of the scope of the present paper.
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Figure 13.1: Training curves (for training and validation datasets) for the dif-
ferent tested DVAE models (indicated in the legend).
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Chapter 14

Discussion

In this section, we conclude our review of DVAEs with a discussion. First, we
briefly recall the fundamental motivation for designing and using DVAEs, then
we point out their remarkable flexibility, at all levels (design of the generation
and inference models, high-level and low-level implementation). Then, we come
back on the crucial point of latent factors disentanglement in the present context
of sequential data. Finally, we present some perspectives in data source coding.

14.1 Fundamental motivation for DVAEs

The fundamental motivation for designing and using DVAEs is to mix the world
of dynamical models, designed to model the dynamics of sequential data, and
the world of VAEs, designed to model the latent factors of data variations. In
doing so, we expect to separate the data dynamics from the other factors of
variations (see Section 14.3 below dedicated to this specific point), and use the
latter to augment the expressivity of the models. Another way to express this
idea is to point out the superiority of DVAEs over RNNs: Adding a latent
variable zt within an RNN adds a lot of flexibility and modeling power to the
conditional output density. Let us here quote the authors of (Chung et al.,
2015): “We show that the introduction of latent random variables can provide
significant improvements in modelling highly structured sequences such as natu-
ral speech sequences. We empirically show that the inclusion of randomness into
high-level latent space can enable the VRNN to model natural speech sequences
with a simple Gaussian distribution as the output function. However, the stan-
dard RNN model using the same output function fails to generate reasonable
samples. An RNN-based model using more powerful output function such as a
GMM can generate much better samples, but they contain a large amount of
high-frequency noise compared to the samples generated by the VRNN-based
models.”

In the same line, we can point out the superiority of DVAE over classical
(non-deep) DBNs and SSMs thanks to the deep non-linear layers of information
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processing. Again, let us quote the authors of (Chung et al., 2015) “Drawing
inspiration from simpler dynamic Bayesian networks (DBNs) such as HMMs
and Kalman filters, the proposed variational recurrent neural network (VRNN)
explicitly models the dependencies between latent random variables across sub-
sequent timesteps. However, unlike these simpler DBN models, the VRNN
retains the flexibility to model highly non-linear dynamics.” Of course, this
kind of statements applies to the whole DVAE family of models.

14.2 DVAE outcome: A story of flexibility

14.2.1 Flexibility of the generative model(s)

As we have seen in this review, a lot of different possible generative models can
be derived from the general form (4.4) by simplifying the variable dependen-
cies. The models we have reviewed in detail, STORN, VRNN, SRNN, etc, are
instances of resulting generative model but there are other possibilities. More-
over, each model can be derived in different versions: Driven/undriven mode,
predictive/non-predictive mode, and using one or several feature extractors.

When designing the generative model, complexity issues may be considered.
For example, we can cite the authors of (Bayer and Osendorfer, 2014): “[...]
we can restrict ourselves to prior distributions over the latent variables that
factorise over time steps, i.e., p(z1:T ) =

∏T
t=1 p(zt). This is much easier to

handle in practice, as calculating necessary quantities such as the KL-divergence
can be done independently over all time steps and components of zt.” But at the
same time, the systematic aspect of the VAE methodology (and the versatility of
current deep learning toolkits) enables in principle to train a model of arbitrary
complexity. Hence, if one is not limited with computational cost, this offers new
possibilities, see for example our remark in Section 11.1: In this framework, not
only it is easy to go from a linear dynamical model to a non-linear one, but it
is also very easy to go from an order-1 temporal model to an infinite order.

14.2.2 Flexibility of the inference model(s)

In DVAEs, as in standard VAEs, the true posterior distribution is usually in-
tractable due to non-linearities, which is why we have to define an inference
model in addition to the generative model (we cannot apply Bayes rule analyti-
cally). However, a key feature of DVAEs with respect to standard VAEs is that
we have to define an inference model over a sequence of latent vectors. Even
though the true posterior distribution over this latent sequence is analytically
intractable, we can leverage the chain rule and the D-separation principle to
analyze the structure of the true posterior (induced by the chosen generative
model), that is the dependencies between a latent random vector at a given
time step and the remaining latent and observed sequential data. It seems quite
natural to exploit this knowledge to design the structure of the inference model,
so that it is consistent with the structure of dependencies in the true intractable
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posterior. Yet, we have seen that several seminal papers on DVAEs did not
follow this “consistency principle,” and more importantly did not justify the
chosen structure of the inference model. Nevertheless, it is not mandatory to
follow the structure of the true posterior to design the inference model. For
instance, if the structure of the true posterior distribution implies a non-causal
processing of the observations, one may drop the non-causal dependencies on
purpose for online applications. Simplifying the posterior dependencies may
also be motivated by the computational complexity of inference.

Another key difference between DVAEs and VAEs relates to how the VLB
(or actually an estimate of the VLB) is computed. The VLB involves intractable
expectations which are usually replaced with empirical averages, using samples
drawn from the inference model. The sampling procedure in DVAEs has to be
recursive due to the dynamical nature of the model, a constraint that standard
VAEs do not have. This recursive sampling is due to the use of RNNs, and it
can be costly. As will be discussed below, other neural network architectures
can be more computationally efficient than RNNs.

14.2.3 Flexibility of the implementation

As already discussed in Section 4.1.2, a lot of different possibilities exist for
the high-level implementation of DVAEs: We recall that (many) different devel-
oped probabilistic model representations can correspond to the same compact
representation. Indeed, the compact form describes all the parent-child rela-
tionships between random variables, regardless of how these relationships are
implemented in practice. Therefore, the compact representation is important
to understand the probabilistic dependencies between variables. However, one
must be aware that the optimisation does not search for all possible models sat-
isfying the relationships of the compact representation, but only for one specific
model corresponding to the developed representation. Indeed, this representa-
tion allows to understand how the dependencies are implemented in practice,
and therefore over which parameter space the model is optimised. We have seen
that this representation typically involves some kind of recurrent architecture.
While such architectures allow to encode high-order temporal dependencies,
their developed graphical representation often includes no dependencies higher
than first order. Therefore, the developed representation can be “visually mis-
leading.” This duality is very important in DVAE, and we highly encourage to
systematically present both representations when discussing, introducing and
presenting DVAEs, as we did in this review.

Once the high-level DVAE architecture is chosen, a lot of different possibil-
ities also exist for the low-level implementation: Network type (e.g., LSTM vs
GRU) and low-level (hyper-)parameterization (number of layers in a network,
number of units per layers, type of activation function, and classical deep learn-
ing modules such as batch normalisation for example). We chose not to deal
extensively with these low-level implementation aspects in this review, we con-
sider it as deep learning routine. Of course, all those choices (or at least part
of them) depend on data nature and datasets, and can significantly influence
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modeling performance.

14.2.4 Other network architectures for sequential data mod-
eling

In this review, we focused on deep generative latent-variable models of sequen-
tial data using RNNs (or simple feed-forward fully-connected DNNs for temporal
dependencies of order 1). However, other neural network architectures can deal
with sequential data of arbitrary length, the most popular ones probably being
convolutional architectures. While RNNs are based on an infinite-order tem-
poral modeling, CNNs generally have a fixed-length receptive field implying a
finite-order temporal modeling. In particular, temporal convolutional networks
(TCNs) are getting more and more popular due to competitive performance
with RNNs (e.g., in speech separation (Luo and Mesgarani, 2019)), while being
more flexible and computationally efficient (Bai et al., 2018). A TCN is based
on causal and dilated 1-dimensional convolutions, sharing similarities with the
Wavenet architecture (van den Oord et al., 2016), and just as an RNN it outputs
a sequence of the same length as the input sequence. Combining TCNs with
VAEs has been explored in (Aksan and Hilliges, 2019).

Another popular neural network architecture that can deal with sequential
data is the Transformer (Vaswani et al., 2017), which is based solely on atten-
tion mechanisms, dispensing with recurrence and convolutions entirely. How-
ever, only very few works have considered leveraging transformers for generative
modeling in the VAE framework. We only found transformer-based VAEs re-
cently proposed for sentence generation (Liu and Liu, 2019), story completion
(Wang and Wan, 2019), and music representation learning (Jiang et al., 2020).

14.3 DVAEs and latent factors disentanglement

As stated in (Chen et al., 2017), “A key goal of representation learning is to
identify and disentangle the underlying causal factors of the data, so that it be-
comes easier to understand the data, to classify it, or to perform other tasks.”
In a general manner, a DVAE mixes such (stochastic) unsupervised represen-
tation learning with a (deterministic) temporal encoding-decoding model. One
general challenge here is to separate the data dynamics (i.e., their temporal
structure) and other types of variations (e.g., speaker identity for speech data,
image content in terms of objects for 2D-images and videos). Note that latent
factors disentanglement is not necessarily natural nor efficient in the standard
VAE, it somehow has to be “encouraged” (Higgins et al., 2017). The same issue
holds with DVAEs. Moreover, as we already started to report in Section 2.5,
one general problem when mixing latent factors learning with a deterministic
temporal model, is that, if the latter is powerful (e.g., an autoregressive model,
implemented with an RNN), there is a tendency that it captures all of data
information without the latent variable being actually used. This problem has
been reported in several papers, in particular for many-to-one encoding / one-
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to-many decoding architectures dedicated either to image modeling, e.g., (Chen
et al., 2017; Lucas and Verbeek, 2018) or text/dialog modeling, e.g., (Bowman
et al., 2016; Serban et al., 2016). Beyond the general disentanglement chal-
lenge, this problem is linked with the difficulty for a single latent vector z to
efficiently encode the content of a long input sequence. As we reported before,
different solutions have been proposed in the literature to tackle this problem,
e.g., “weakening” the decoder or structuring the latent representation with hi-
erarchical models (see Section 2.5). This generally conducts to obtain a more
influential and more disentangled latent representation. Yet it seems that there
is still room for improvement. Note that several papers dealing with disentan-
glement and separate control of content and dynamics in videos have reported
impressive results in an adversarial training framework (Denton and Birodkar,
2017; Villegas et al., 2017; Tulyakov et al., 2018).

The DVAEs we focused on in this review do not consider a single latent vector
z for a data sequence, but they rather consider a latent vector sequence z1:T , that
is generally synchronized with the data sequence x1:T and with the sequence(s)
of internal state vectors of the temporal models. This raises new issues and
challenges, compared to the works done in 2D-image or language/text modeling
for example. A first remark that is worth mentioning, although quite trivial,
is that this DVAE configuration first solves the encoding capacity problem for
large data sequences: Here, as mentioned in (Yingzhen and Mandt, 2018), “[the
model] keeps track of the time-varying aspects of xt in zt for every t, making
the reconstruction to be time-local and therefore much easier. Therefore, the
stochastic model is better suited if the sequences are long and complex.” Of
course, this generally comes at the price of additional computational complexity
and “coding cost” for the latent representation.

Then, in such DVAEs, the problem of separating data dynamics and other
causal factors of variations takes a new color since the latter are here allowed to
have their own dynamics. In this context, one way to address the disentangle-
ment challenge is still to apply the hierarchical modeling of latent factors, but
here on the time dimension, that is to design models with a different time resolu-
tion for different latent variables.1 For example, we have seen in this review the
DSAE model (Yingzhen and Mandt, 2018) and the FHVAE model (Hsu et al.,
2017b) which include latent variables defined at the sequence level, segment level
(subsequence of consecutive frames) or frame level. For speech signals model-
ing, this appears as a nice way to separate the modeling and control of phonetic
information (defined at the segment or frame level) and speaker/session infor-
mation (defined at the sequence level). A generalization of this approach would
be to impose a prior distribution of z1:T that fits the dynamics of the latent
factors to extract, that can be significantly different from the data dynamics.

In a general manner, the issue of separating dynamics and other factors of
variation is still largely open in the literature of DVAE models with a sequence
of latent vectors. For example, we were surprised to notice that there is in gen-
eral very few experiments and information on the explainability of the extracted

1This approach is not incompatible with other types of hierarchical models of course.
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sequence of latent factors. Experiments consisting of swapping the extracted la-
tent factors across two data sequences before resynthesizing them were reported
in, e.g., (Hsu et al., 2017b). Those experiments show for example that for speech
signals, speaker identity can be exchanged between two sentences while preserv-
ing the same phonetic content, which is a very nice result. Yet we are eager
to go further in the disentanglement and separate control of speech production
factors. Moreover, basic questions such as the impact of the size of zt and ht on
modeling quality and relevance of extracted latent factors are poorly considered
so far. For example, for speech processing, what happens if the size of zt is
reduced to a few entries, whereas the size of ht is kept comparable to the size
of data xt?

Note that we can read in (Hsu et al., 2017b) (in 2017) that “to the best
of our knowledge, there has not been any attempt to learn disentangled and
interpretable representations without supervision from sequential data.” About
SRNN (Fraccaro et al., 2016), VRNN (Chung et al., 2015), and SVAE (Johnson
et al., 2016), the authors of (Hsu et al., 2017b) say: “[...] it remains unclear
whether independent attributes are disentangled in the latent space. Moreover,
the learned latent variables in these models are not interpretable without man-
ually inspecting or using labeled data.” Hence, STORN, VRNN, SRNN, etc,
provide a very nice mathematical and methodological framework for sequential
data representation learning, but it seems that there is still a lot of work to
do on the disentanglement challenge. Solutions for the disentanglement of zt,
inspired by existing structured or hierarchical static models, still have to be
developed.

14.4 Perspectives in source coding

Although the VAE and DVAE are in essence an excellent framework for extract-
ing efficient and compact data representations, there are relatively few works
on their practical application to data source coding, i.e., including quantization
and bitrate issues for data transmission or storage. We have mentioned above
the problem of z “vanishing” or “being ignored” when a powerful deterministic
temporal encoder-decoder is used, and a few papers have related this problem
to the need to better encode z, in the source coding sense, with an information-
theoretic interpretation of the VAE as a lossy coder (Kingma et al., 2016; Chen
et al., 2017). Among the very few papers on practical application of (D)VAE
to data coding, we can mention the ConvDRAW model of (Gregor et al., 2016),
which learns and encodes a hierarchy of latent variables, resulting in an image
lossy compression that performs similarly to JPEG. Other examples include
VQ-VAE (that is a mix of VAE and vector quantization of z) applied to speech
coding (van den Oord et al., 2017; Gârbacea et al., 2019), and video compression
with rate-distortion autoencoders (Habibian et al., 2019).

As for a general approach to source coding based on DVAEs with a sequence
of latent variables, we only found the recent paper (Yang et al., 2020). The
authors of this paper propose different schemes for encoding a data sequence x1:T
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through the inference and quantization of the corresponding sequence of latent
vectors z1:T , with different options for recurrent connections. One of them,
called Feedback Recurrent AutoEncoder (FRAE), has recurrent connections at
both the encoder and the decoder, and a feedback connection from decoder to
encoder that is reminiscent of the classical closed-loop coding principle (Gersho
and Gray, 2012) even if the authors of (Yang et al., 2020) do not refer to it
explicitly. Interestingly, FRAE can be interpreted as a non-linear predictive
coding scheme: In short, the encoder forms a latent code which encodes only
the residual information missing to reconstruct a data vector from the decoder
deterministic internal state. Of course, this concept of predictive coding is
strongly connected to the concept of predictive mode for the DVAE models that
we discussed in general terms in Section 4.1.1 and that we have seen implemented
in different DVAE models.

This line of works on non-linear predictive coders based on DVAEs is quite
promising and is only at its infancy. As the authors of (Yang et al., 2020) say:
“there is no standard autoencoder architecture for temporally correlated data
that has variable-length and long range dependencies such as video, speech,
and text. The main challenge lies in the difficulty in capturing correlation
information at different time-scales in an online/sequential fashion.” This meets
a concluding remark by the authors of (Chen et al., 2017): “we believe it’s
exciting to extend this principle of learning lossy codes [of the latent variable
z] to other forms of data, in particular those that have a temporal aspect like
audio and video.”
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Chapter 15

Appendix A:
Marginalization of the
internal recurrent state h;
example of STORN

In this section, we present how the internal state vector sequence h1:T can be
“marginalized” in a DVAE model formulation, i.e., how we can express ht as
a deterministic function of the other random variables (and thus go from the
developed form of the model to the compact form). This is presented for the
STORN model but a similar derivation can be made for the other models.

For concision, we replace here (7.1) with the generic notation ht = fh(xt−1, zt,ht−1).
From the dependencies between the different variables, represented by the graph-
ical model in Fig. 7.1, the joint distribution between all variables is given by:

pθ(x1:T ,h1:T , z1:T ) =

T∏
t=1

pθ(xt|ht)pθ(ht|xt−1, zt,ht−1)p(zt). (15.1)

Since ht is a deterministic function of xt−1, zt, and ht−1, its conditional density
is a Dirac distribution with a mode given by fh(xt−1, zt,ht−1), i.e.:

pθ(ht|xt−1, zt,ht−1) = δ(ht; fh(xt−1, zt,ht−1)). (15.2)

Let us redenote with d1:T the sequence h1:T seen as a (deterministic) function of
x1:T and z1:T only, i.e., at each time step we have dt = ht = ht(x1:t−1, z1:t) =
fh(xt−1, zt, fh(xt−2, zt−1, ...)), with recursive injection of the recurrent terms
into this latter expression up to the first term fh(x0, z1,h0). Marginalizing
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(15.1) with respect to h1:T leads to:

pθ(x1:T , z1:T ) =

∫
RH×T

T∏
t=1

pθ(xt|ht)δ(ht; fh(xt−1, zt,ht−1))p(zt)dh1:T (15.3)

=

T∏
t=1

pθ(xt|dt)p(zt). (15.4)

To go from (15.3) to (15.4), one can start by marginalizing over hT , so that hT
is replaced with fh(xT−1, zT ,hT−1), and then marginalizing over hT−1 and so
on. From now on, for simplification of notations, we identify dt with ht, but we
must keep in mind that when doing so, we see ht as a deterministic function of
x1:t−1 and z1:t with the recurrence being “unfolded,” and not as a free random
variable. We thus have:

pθ(x1:T , z1:T ) =

T∏
t=1

pθ(xt|ht)p(zt) =

T∏
t=1

pθ
(
xt|ht(x1:t−1, z1:t)

)
p(zt). (15.5)

From the above equation and (7.7), we deduce the conditional distribution:

pθ(x1:T |z1:T ) =

T∏
t=1

pθ(xt|ht) =

T∏
t=1

pθ
(
xt|ht(x1:t−1, z1:t)

)
. (15.6)

We insist on the fact that in the above equations, h1:T is to be considered as
the set of vectors {ht(x1:t−1, z1:t)}Tt=1 and not as a free random variable.
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