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EM Algorithms for Weighted-Data Clustering
with Application to Audio-Visual Scene Analysis

Israel D. Gebru, Xavier Alameda-Pineda, Florence Forbes and Radu Horaud

Abstract—Data clustering has received a lot of attention and
numerous methods, algorithms and software packages are avail-
able. Among these techniques, parametric finite-mixture models
play a central role due to their interesting mathematical proper-
ties and to the existence of maximum-likelihood estimators based
on expectation-maximization (EM). In this paper we propose a
new mixture model that associates a weight with each observed
point. We introduce the weighted-data Gaussian mixture and we
derive two EM algorithms. The first one considers a fixed weight
for each observation. The second one treats each weight as a
random variable following a gamma distribution. We propose
a model selection method based on a minimum message length
criterion, provide a weight initialization strategy, and validate
the proposed algorithms by comparing them with several state
of the art parametric and non-parametric clustering techniques.
We also demonstrate the effectiveness and robustness of the
proposed clustering technique in the presence of heterogeneous
data, namely audio-visual scene analysis.

Index Terms—finite mixtures, expectation-maximization,
weighted-data clustering, robust clustering, outlier detection,
model selection, minimum message length, audio-visual fusion.

I. INTRODUCTION

Finding significant groups in a set of data points is a
central problem in many fields. Consequently, clustering has
received a lot of attention, and many methods, algorithms
and software packages are available today. Among these
techniques, parametric finite mixture models play a paramount
role, due to their interesting mathematical properties as well as
to the existence of maximum likelihood estimators based on
expectation-maximization (EM) algorithms. While the finite
Gaussian mixture (GMM) [1] is the model of choice, it is
extremely sensitive to the presence of outliers. Alternative
robust models have been proposed in the statistical literature,
such as mixtures of t-distributions [2] and their numerous
variants, e.g. [3], [4], [5], [6], [7], [8]. In contrast to the
Gaussian case, no closed-form solution exists for the t-
distribution and tractability is maintained via the use of EM
and a Gaussian scale mixture representation, T (x|µ,Σ, α) =∫∞
0
N (x|µ,Σ/w) G(w,α/2, α/2)dw, where x is an ob-

served vector, N is the multivariate Gaussian distribution with
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mean µ and covariance Σ/w, and G is the gamma distribution
of a univariate positive variable w parameterized by α. In the
case of mixtures of t-distributions, with mixing coefficients
πk,

∑K
k=1 πkT (x|µk,Σk, αk), a latent variable w can also

be introduced. Its distribution is a mixture of K gamma
distributions that accounts for the component-dependent αk
[2]. Clustering is then usually performed associating a positive
variable wi, distributed as w, with each observed point xi.
The distributions of both wi and xi do not depend on i.
The observed data are drawn from i.i.d. variables, distributed
according to the t-mixture, or one of its variants [2], [3], [4],
[5], [6], [7], [8].

In this paper we propose a finite mixture model in which
variable wi is used as a weight to account for the reliability of
the observed xi and this independently on its assigned cluster.
The distribution of wi is not a gamma mixture anymore but has
to depend on i to allow each data point to be potentially treated
differently. In contrast to mixtures of t-distributions, it follows
that the observed data are independent but not identically
distributed. We introduce the weighted-data Gaussian mixture
model (WD-GMM). We distinguish two cases, namely (i) the
weights are known a priori and hence they are fixed, and
(ii) the weights are modeled as variables and hence they
are iteratively updated, given initial estimates. We show that
in the case of fixed weights, the GMM parameters can be
estimated via an extension of the standard EM which will be
referred to as the fixed weighted-data EM algorithm (FWD-
EM). Then we consider the more general case of weights that
are treated as random variables. We model these variables
with gamma distributions (one distribution for each variable)
and we formally derive a closed-form EM algorithm which
will be referred to as the weighted-data EM algorithm (WD-
EM). While the M-step of the latter is similar to the M-step
of FWD-EM, the E-step is considerably different as both the
posterior probabilities (responsibilities) and the parameters of
the posterior gamma distributions (the weights) are updated
(E-Z-step and E-W-step). The responsibilities are computed
using the Pearson type VII distribution (the reader is referred
to [5] for a recent discussion regarding this distribution),
also called the Arellano-Valle and Bolfarine generalized t-
distribution [9], and the parameters of the posterior gamma
distributions are computed from the prior gamma parameters
and from the Mahalanobis distance between the data and the
mixture means. Note that the weights play a different role
than the responsibilities. Unlike the responsibilities, which
are normalized, the weights are random variables that can
take arbitrary positive values. Their posterior means can be
used as an absolute measure of the relevance of the data.
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Typically, an outlying data point which is far from any cluster
center will have a small weight while it may still be assigned
with a significant responsibility value to the closest cluster.
Responsibilities indicate which cluster center is the closest
but not if any of them is close at all.

The idea of weighted-data clustering has already been pro-
posed in the framework of non-parametric clustering methods
such as K-means and spectral clustering, e.g. [10], [11], [12],
[13]. These methods generally propose to incorporate prior
information in the clustering process in order to prohibit
atypical data (outliers) to contaminate the clusters. The idea
of modeling data weights as random variables and to estimate
them via EM was proposed in [14] in the particular framework
of Markovian brain image segmentation. In [14] it is shown
that specific expert knowledge is not needed and that the data-
weight distribution guide the model towards a satisfactory
segmentation. A variational EM is proposed in [14] as their
formulation has no closed form. In this paper we build on
the idea that, instead of relying on prior information about
atypical data, e.g. [10], [11], [12], [13], we devise a novel EM
algorithm that updates the weight distributions. The proposed
method belongs to the robust clustering category of mixture
models because observed data that are far away from the
cluster centers have little influence on the estimation of the
means and covariances.

An important feature of mixture based clustering methods
is to perform model selection on the premise that the number
of components K in the mixture corresponds to the number of
clusters in the data. Traditionally, model selection is performed
by obtaining a set of candidate models for a range of values of
K (assuming that the true value is in this range). The number
of components is selected by minimizing a model selection cri-
teria, such as the Bayesian inference criterion (BIC), minimum
message length (MML), Akaike’s information criteria (AIC) to
cite just a few [1], [15]. The disadvantage of these methods is
twofold. Firstly, a whole set of candidates has to be obtained
and problems associated with running EM many times may
emerge. Secondly, they provide a number of components that
optimally approximate the density and not the true number of
clusters present in the data. More recently, there seems to be
a consensus among mixture model practitioners that a well-
founded and computationally efficient model selection strategy
is to start with a large number of components and to merge
them [16]. [15] proposes a practical algorithm that starts with a
very large number of components (thus making the algorithm
robust to initialization), iteratively annihilates components,
redistributes the observations to the other components, and
terminates based on the MML criterion. [17] starts with an
overestimated number of components using BIC, and then
merges them hierarchically according to an entropy criterion.
More recently [18] proposes a similar method that merges
components based on measuring their pair-wise overlap.

Another trend in handling the issue of finding the proper
number of components is to consider Bayesian non-parametric
mixture models. This allows the implementation of mixture
models with an infinite number of components via the use
of Dirichlet process mixture models. In [19], [20] an infinite

Gaussian mixture (IGMM) is presented with a computationally
intensive Markov Chain Monte Carlo implementation. At first
glance, IGMM may appear similar to FWD-EM. However,
these two algorithms are quite different. While IGMM is fully
Bayesian the proposed FWD-EM is not, in the sense that no
priors are assumed on the parameters, typically the means and
covariance matrices. IGMM implies Student predictive distri-
butions while FWD-EM involves only Gaussian distributions.

More recently, more flexibility in the cluster shapes has been
allowed by considering infinite mixture of infinite Gaussian
mixtures (I2GMM) [21]. The flexibility is however limited
to a cluster composed of sub-clusters of identical shapes
and orientations, which may alter the performance of this
approach. Altogether, IGMM and I2GMM are not designed
to handle outliers, as illustrated in Section VIII, Figs. 2-f and
2-g. Infinite Student mixture models have also been considered
[22], but inference requires a variational Bayes approximation
which generates additional computational complexity.

Bayesian non-parametrics, although promising techniques,
require a fully Bayesian setting. The latter, however, induces
additional complexity for handling priors and hyper-priors,
especially in a multi-variate context. In contrast, our latent
variable approach allows exact inference. With respect to
model selection, we therefore propose to extend the method of
[15] to weighted-data mixtures. We formally derive an MML
criterion for the weighted-data mixture model and we plug
this criterion into an efficient algorithm which, starting with
a large number of components, simultaneously estimates the
model parameters, the posterior probabilities of the weights
and the optimal number of components.

We also propose to apply the proposed weighted-data robust
clustering method to the problem of fusing auditory and visual
information. This problem arises when the task is, e.g. to
detect a person that is both seen and heard, such as an active
speaker. Single-modality signals – vision-only or audio-only
– are often either weak or ambiguous, and it may be useful
to combine information from different sensors, e.g. cameras
and microphones. There are several difficulties associated
with audio-visual fusion from a data clustering perspective:
the two sensorial modalities (i) live in different spaces,
(ii) are contaminated by different types of noise with different
distributions, (iii) have different spatiotemporal distributions,
and (iv) are perturbed by different physical phenomena, e.g.
acoustic reverberations, lighting conditions, etc. For example,
a speaker may face the camera while he/she is silent and may
emit speech while he/she turns his/her face away from the
camera. Speech signals have sparse spectro-temporal structure
and they are mixed with other sound sources, such as music
or background noise. Speaker faces may be totally or partially
occluded, in which case face detection and localization is
extremely unreliable. We show that the proposed method is
well suited to find audio-visual clusters and to discriminate
between speaking and silent people.

The remainder of this paper is organized as follows. Sec-
tion II outlines the weighted-data mixture model; Section III
sketches the FWD-EM algorithm. Weights modeled with ran-
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dom variables are introduced in Section IV and the WD-EM is
described in detail in Section V. Section VI details how to deal
with an unknown number of clusters and Section VII addresses
the issue of algorithm initialization. In Section VIII the pro-
posed algorithms are tested and compared with several other
parametric and non-parametric clustering methods. Section IX
addresses clustering of audio-visual data. Section X concludes
the paper. Additional results and videos are available online.1

II. GAUSSIAN MIXTURE WITH WEIGHTED DATA

In this Section, we present the intuition and the formal
definition of the proposed weighted-data model. Let x ∈ Rd be
a random vector following a multivariate Gaussian distribution
with mean µ ∈ Rd and covariance Σ ∈ Rd×d, namely
p(x|θ) = N (x;µ,Σ), with the notation θ = {µ,Σ}. Let
w > 0 be a weight indicating the relevance of the observation
x. Intuitively, higher the weight w, stronger the impact of x
should be. The weight can therefore be incorporated into the
model by “observing x w times”. In terms of the likelihood
function, this is equivalent to raise p(x;θ) to the power w, i.e.
N (x;µ,Σ)w. However, the latter is not a probability distri-
bution since it does not integrate to one. It is straightforward
to notice that N (x;µ,Σ)w ∝ N (x;µ,Σ/w). Therefore, w
plays the role of the precision and is different for each datum
x. Subsequently, we write:

p̂(x;θ, w) = N
(
x;µ,

1

w
Σ

)
, (1)

from which we derive a mixture model with K components:

p̃(x; Θ, w) =

K∑
k=1

πkN
(
x;µk,

1

w
Σk

)
, (2)

where Θ = {π1, . . . , πK ,θ1, . . . ,θK} are the mixture pa-
rameters, π1, . . . , πK are the mixture coefficients satisfying
πk ≥ 0 and

∑K
k=1 πk = 1, θk = {µk,Σk} are the parameters

of the k-th component and K is the number of components.
We will refer to the model in (2) as the weighted-data
Gaussian mixture model (WD-GMM). Let X = {x1, . . . ,xn}
be the observed data and W = {w1, . . . , wn} be the weights
associated withX . We assume each xi is independently drawn
from (2) with w = wi. The observed-data log-likelihood is:

ln p̃(X; Θ,W )=

n∑
i=1

ln

(
K∑
k=1

πkN
(
xi;µk,

1

wi
Σk

))
. (3)

It is well known that direct maximization of the log-likelihood
function is problematic in case of mixtures and that the
expected complete-data log-likelihood must be considered
instead. Hence, we introduce a set of n hidden (assignment)
variables Z = {z1, . . . , zn} associated with the observed
variables X and such that zi = k, k ∈ {1, . . . ,K} if and only
if xi is generated by the k-th component of the mixture. In the
following we first consider a fixed (given) number of mixture
components K, to later on extend the theory to unknown K,
thus estimating the number of components from the data.

1https://team.inria.fr/perception/research/wdgmm/

III. EM WITH FIXED WEIGHTS

The simplest case is when the weight values are provided
at algorithm initialization, either using some prior knowledge
or estimated from the observations (e.g. Section VII), and are
then kept fixed while alternating between the expectation and
maximization steps. In this case, the expected complete-data
log-likelihood is:

Qc
(
Θ,Θ(r)

)
= EP (Z|X;W ,Θ(r)) [lnP (X,Z;W ,Θ)] , (4)

where EP [·] denotes the expectation with respect to the distri-
bution P . The (r + 1)-th EM iteration consists of two steps
namely, the evaluation of the posterior distribution given the
current model parameters Θ(r) and the weights W (E-step),
and the maximization of (4) with respect to Θ (M-step):

Θ(r+1) = arg max
Θ
Qc
(
Θ,Θ(r)

)
. (5)

It is straightforward to show that this yields the following
FWD-EM algorithm:

A. The E-Step

The posteriors η(r+1)
ik = p(zi = k|xi;wi,Θ(r)) are updated

with:

η
(r+1)
ik =

π
(r)
k p̂(xi;θ

(r)
k , wi)

p̃(xi; Θ
(r), wi)

, (6)

where p̂ and p̃ are defined in (1) and (2).

B. The M-Step

Expanding (4) we get:

Qc
(
Θ,Θ(r)

)
=

n∑
i=1

K∑
k=1

η
(r+1)
ik lnπkN

(
xi;µk;

1

wi
Σk

)
Θ
=

n∑
i=1

K∑
k=1

η
(r+1)
ik

(
lnπk − ln |Σk|1/2

− wi
2

(xi − µk)>Σ−1k (xi − µk)
)
, (7)

where Θ
= denotes equality up to a constant that does not depend

on Θ. By canceling out the derivatives with respect to the
model parameters, we obtain the following update formulae
for the mixture proportions, means, and covariances matrices:

π
(r+1)
k =

1

n

n∑
i=1

η
(r+1)
ik , (8)

µ
(r+1)
k =

n∑
i=1

wiη
(r+1)
ik xi

n∑
i=1

wiη
(r+1)
ik

, (9)

Σ
(r+1)
k =

n∑
i=1

wiη
(r+1)
ik

(
xi − µ(r+1)

k

)(
xi − µ(r+1)

k

)>
n∑
i=1

η
(r+1)
ik

.

(10)
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IV. MODELING THE WEIGHTS

As we already remarked, the weights play the role of
precisions. The notable difference between standard finite
mixture models and the proposed model is that there is a
different weight wi, hence a different precision, associated
with each observation xi. Within a Bayesian formalism, the
weights W may be treated as random variables, rather than
being fixed in advance, as in the previous case. Since (1) is
a Gaussian, a convenient choice for the prior on w, p(w) is
the conjugate prior of the precision with known mean, i.e. a
gamma distribution. This ensures that the weight posteriors
are gamma distributions as well. Summarizing we have:

P (w;φ) = G (w;α, β) = Γ (α)
−1
βαwα−1e−βw, (11)

where G (w;α, β) is the gamma distribution, Γ(α) =∫∞
0
tα−1e−tdt is the gamma function, and φ = {α, β} are

the parameters of the prior distribution of w. The mean and
variance of the random variable w are given by:

E[w] = α/β, (12)

var[w] = α/β2. (13)

V. EM WITH RANDOM WEIGHTS

In this section we derive the WD-EM algorithm associated
to a model in which the weights are treated as random
variables following (11). The gamma distribution of each wi
is assumed to be parameterized by φi = {αi, βi}. Within this
framework, the expectation of the complete-data log-likelihood
is computed over both the assignment and weight variables:

QR

(
Θ,Θ(r)

)
= EP (Z,W |X;Θ(r),Φ)[lnP (Z,W ,X; Θ,Φ)],

(14)
where we used the notation Φ = {φ1, . . . ,φn}. We notice
that the posterior distribution factorizes on i:

P
(
Z,W |X; Θ(r),Φ

)
=

n∏
i=1

P
(
zi, wi|xi; Θ(r),φi

)
and each one of these factors can be be decomposed as:

P
(
zi, wi|xi; Θ(r),φi

)
=

P (wi|zi,xi; Θ(r),φi)P (zi|xi; Θ(r),φi), (15)

where the two quantities on the right-hand side of this equation
have closed-form expressions. The computation of each one of
these two expressions leads to two sequential steps, the E-W-
step and the E-Z-step, of the expectation step of the proposed
algorithm.

A. The E-Z Step

The marginal posterior distribution of zi is obtained by
integrating (15) over wi. As previously, we denote the re-
sponsibilities with η

(r+1)
ik = P (zi = k|xi; Θ(r),φi). The

integration computes:

η
(r+1)
ik =

∫
P
(
zi = k,wi|xi; Θ(r),φi

)
dwi

k∝
∫
π
(r)
k P

(
xi|zi = k,wi; Θ

(r)
)
P (wi;φi) dwi

=

∫
π
(r)
k p̂

(
xi;θ

(r)
k , wi

)
G(wi;αi, βi) dwi

∝ π(r)
k P(xi;µ

(r)
k ,Σ

(r)
k , αi, βi), (16)

where P(xi;µk,Σk, αi, βi) denotes the Pearson type VII
probability distribution function, which can be seen as a
generalization of the t-distribution:

P(x;µ,Σ, α, β) =

Γ(α+ d/2)

|Σ|1/2 Γ(α) (2πβ)d/2

(
1 +
‖x− µ‖2Σ

2β

)−(α+ d
2 )

.

(17)

B. The E-W Step

The posterior distribution of wi, namely p(wi|zi =
k,xi; Θ

(r),φi) is a gamma distribution, because it is the
conjugate prior of the precision of the Gaussian distribution.
Therefore, we only need to compute the parameters of the
posterior gamma distribution:

P (wi|zi = k,xi;Θ
(r),φi)

wi∝
P (xi|zi = k,wi; Θ

(r))P (wi;φi)

= N (xi;µ
(r)
k ,Σ

(r)
k /wi) G(wi;αi, βi)

= G(wi; a
(r+1)
i , b

(r+1)
ik ), (18)

where the parameters of the posterior gamma distribution are
evaluated with:

a
(r+1)
i = αi +

d

2
, (19)

b
(r+1)
ik = βi +

1

2

∥∥∥xi − µ(r)
k

∥∥∥2
Σ

(r)
k

(20)

The conditional mean of wi, namely w
(r+1)
ik , can then be

evaluated with:

w
(r+1)
ik = EP (wi|zi=k,xi;Θ(r),φi)

[wi] =
a
(r+1)
i

b
(r+1)
ik

. (21)

While estimating the weights themselves is not needed by
the algorithm, it is useful to evaluate them in order to fully
characterize the observations and to discriminate between
inliers and outliers. First notice that the marginal posterior
distribution of wi is a mixture of gamma distributions:

p(wi|xi; Θ(r),φi)

=

K∑
k=1

p(wi|zi = k,xi; Θ
(r),φi)p(zi = k|xi; Θ(r),φi)

=

K∑
k=1

G(wi; a
(r+1)
i , b

(r+1)
ik ) η

(r+1)
ik , (22)
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and therefore the posterior mean of wi is evaluated with:

w
(r+1)
i = E[wi|xi; Θ(r),φi] =

K∑
k=i

η
(r+1)
ik w

(r+1)
ik . (23)

By inspection of (19), (20), and (21) it is easily seen
that the value of wi decreases as the distance between the
cluster centers and observation xi increases. Importantly, the
evaluation of wi enables outlier detection. Indeed, an outlier
is expected to be far from all the clusters, and therefore all
wik will be small, leading to a small value of wi. It is worth
noticing that this is not possible using only the responsibilities
ηik, since they are normalized by definition, and therefore their
value is not an absolute measure of the datum’s relevance, but
only a relative measure of it.

C. The Maximization Step

This step maximizes the expected complete-data log-
likelihood over the mixture parameters. By expanding (14),
we have:

QR

(
Θ,Θ(r)

) Θ
=
n∑
i=1

K∑
k=1

∫
wi

η
(r+1)
ik lnπkN

(
xi;µk,

1

wi
Σk

)
× p(wi|xi, zi = k,Θ(r),φi)dwi

=

n∑
i=1

K∑
k=1

η
(r+1)
ik

(
lnπk − ln |Σk|1/2

−
w

(r+1)
ik

2
(xi − µk)>Σ−1k (xi − µk)

)
. (24)

The parameter updates are obtained from canceling out the
derivatives of the expected complete-data log-likelihood (24).
As with standard Gaussian mixtures, all the updates are closed-
form expressions:

π
(r+1)
k =

1

n

n∑
i=1

η
(r+1)
ik , (25)

µ
(r+1)
k =

n∑
i=1

w
(r+1)
ik η

(r+1)
ik xi

n∑
i=1

w
(r+1)
ik η

(r+1)
ik

, (26)

Σ
(r+1)
k =

n∑
i=1

η
(r+1)
ik w

(r+1)
ik

(
xi − µ(r+1)

k

)(
xi − µ(r+1)

k

)>
n∑
i=1

η
(r+1)
ik

.

(27)
It is worth noticing that the M-step of the WD-EM algorithm is
very similar to the M-step of the FWD-EM algorithm (section
III). Indeed, the above iterative formulas, (25), (26), (27)
are identical to the formulas (8), (9), (10), except that the
fixed weights wi are here replaced with the posterior means
of the random weights, w(r+1)

ik .

VI. ESTIMATING THE NUMBER OF CLUSTERS

So far it has been assumed that the number of mixture
components K is provided in advance. This assumption is
unrealistic for most real-world applications. In this section
we propose to extend the method and algorithm proposed
in [15] to the weighted-data clustering model. An interesting
feature of this model selection method is that it does not
require parameter estimation for many different values of
K, as it would be the case with the Bayesian information
criterion (BIC) [23]. Instead, the algorithm starts with a large
number of clusters and iteratively deletes clusters as they
become irrelevant. Starting with a large number of clusters
has the additional advantage of making the algorithm robust
to initialization. Formally, the parameter estimation problem
is cast into a transmission encoding problem and the criterion
is to minimize the expected length of the message to be
transmitted:

length(X,Θ) = length(Θ) + length(X|Θ). (28)

In this context, the observations and the parameters have to
be quantized to finite precision before the transmission. This
quantization sets a trade off between the two terms of the
previous equation. Indeed, when truncating to high precision,
length(Θ) may be long, but length(X|Θ) will be short, since
the parameters fit well the data. Conversely, if the quantization
is coarse, length(Θ) may be short, but length(X|Θ) will
be long. The optimal quantization step can be found by
means of the Taylor approximation [15]. In that case, the
optimization problem corresponding to the minimum message
length (MML) criterion, is:

ΘMML = argmin
Θ

{
− log P(Θ)− log P(X|Θ,Φ)

+
1

2
log|I(Θ)|+ D(Θ)

2

(
1 + log

1

12

)}
, (29)

where I(Θ) = −E{D2
Θ log P(X|Θ)} is the expected Fisher

information matrix (FIM) and D(Θ) denotes the dimension-
ality of the model, namely the dimension of the parameter
vector Θ. Since the minimization (29) does not depend on
the weight parameters, Φ will be omitted for simplicity.

In our particular case, as in the general case of mixtures,
the Fisher information matrix cannot be obtained analytically.
Indeed, the direct optimization of the log-likelihood does not
lead to closed-form solutions. Nevertheless, it was noticed that
the complete FIM upper bounds the FIM [15], and that the
expected complete-data log-likelihood lower bounds the log-
likelihood. This allows us to write the following equivalent
optimization problem:

ΘMML = argmin
Θ

{
− log P(Θ)− logQR

(
Θ,Θ(r)

)
+

1

2
log|Ic(Θ)|+ D(Θ)

2

(
1 + log

1

12

)}
, (30)

where Ic denotes the expected complete-FIM and QR is
evaluated with (24).

As already mentioned, because there is a different weight wi
for each observation i, the observed data are not identically
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distributed and our model cannot be considered a classical
mixture model. For this reason, the algorithm proposed in
[15] cannot be applied directly to our model. Indeed, in the
proposed WD-GMM setting, the complete-FIM is:

Ic(Θ)=diag
(
π1

n∑
i=1

Ii(θ1), . . . , πK

n∑
i=1

Ii(θK), nM
)

(31)

where Ii(θk) = −E{D2
θk

logP(xi|θk, αi, βi)} is the Fisher
information matrix for the i-th observation with respect to
the parameter vector θk (mean and the covariance) of the
k-th component, P is defined in (17), and M is the Fisher
information matrix of the multinomial distribution, namely the
diagonal matrix diag(π−11 , . . . , π−1K ). We can evaluate |Ic(Θ)|
from (31):

|Ic(Θ)| = nK(M+1)|M|
K∏
k=1

πMk

∣∣∣∣∣ 1n
n∑
i=1

Ii(θk)

∣∣∣∣∣ , (32)

where M denotes the number of free parameters of each
component. For example, M = 2d when using diagonal
covariance matrices or M = d(d + 3)/2 when using full
covariance matrices.

Importantly, one of the main advantages of the methodology
proposed in [15] is that one has complete freedom to choose
a prior distribution on the parameters, P(Θ). In our case,
inspired by (32), we select the following prior distributions
for the parameters:

P(θk) ∝

∣∣∣∣∣ 1n
n∑
i=1

Ii(θk)

∣∣∣∣∣
− 1

2

, (33)

P(π1, . . . , πK) ∝ |M|− 1
2 . (34)

By substitution of (32)–(34) into (30) we obtain the following
optimization problem:

ΘMML = argmin
Θ

{M
2

K∑
k=1

log πk − logQR

(
Θ,Θ(r)

)
+
K(M + 1)

2

(
1 + log

n

12

)}
, (35)

where we used D(Θ) = K(M + 1).

One may notice that (35) does not make sense (diverges) if
any of the πk’s is allowed to be null. However, in the current
length coding framework, there is no point in transmitting the
parameters of an empty component. Therefore, we only focus
on the non-empty components, namely those components for
which πk > 0. Let K+ denote the index set of non-empty
components and let K+ = |K+| be its cardinality. We can
rewrite (35) as:

ΘMML = argmin
Θ

{M
2

∑
k∈K+

log πk − logQR

(
Θ,Θ(r)

)
+
K+(M + 1)

2

(
1 + log

n

12

)}
. (36)

The above minimization problem can be solved by modi-
fying the EM algorithm described in Section V (notice that
there is an equivalent derivation for the fixed-weigth EM

algorithm described in Section III). Indeed, we remark that the
minimization (36) is equivalent to using a symmetric improper
Dirichlet prior for the proportions with exponent −M/2.
Moreover, since the optimization function for the parameters
of the Gaussian components is the same (equivalently, we used
a flat prior for the mean vector and covariance matrix), their
estimation formulas (26) and (27) still hold. Therefore, we
only need to modify the estimation of the mixture proportions,
namely:

πk =
max

{
0,
∑n
i=1 ηik −

M
2

}∑K
k′=1 max

{
0,
∑n
i=1 ηik′ −

M
2

} . (37)

The max operator in (37) verifies whether the k-th component
is supported by the data. When one of the components be-
comes too weak, i.e. the required minimum support M/2 can-
not be obtained from the data, this component is annihilated.
In other words, its parameters will not be estimated, since
there is no need in transmitting them. One has to be careful in
this context, since starting with a large value of K may lead
to several empty components. In order to avoid this singular
situation, we adopt the component-wise EM procedure (CEM)
[24], as proposed in [15] as well. Intuitively, we run both
E and M steps for one component, before moving to the
next component. More precisely, after running the E-Z and
E-W steps for the component k, its parameters are updated if
k ∈ K+, otherwise the component is annihilated if k 6∈ K+.
The rationale behind this procedure is that, when a component
is annihilated its probability mass is immediately redistributed
among the remaining components. Summarizing, CEM up-
dates the components one by one, whereas the classical EM
simultaneously updates all the components.

The proposed algorithm is outlined in Algorithm 1. In
practice, an upper and a lower number of components, Khigh

and Klow, are provided. Each iteration r of the algorithm
consists of component-wise E and M steps. If needed, some
of the components are annihilated, and the parameters are
updated accordingly, until the relative length difference is
below a threshold, |∆LEN

(r)
MML| < ε. In that case, if the

message length, i.e. (36) is lower than the current optimum,
the parameters, weights, and length are saved in Θmin, Wmin

and LENmin respectively. In order to explore the full range
of K, the less populated component is artificially annihilated,
and CEM is run again. The complexity of Algorithm 1 is
similar to the complexity of the algorithm in [15], with the
exception of the E-W step. However, the most computationally
intensive part of this step (matrix inversion and matrix-vector
multiplications in (20)) is already achieved in the E-Z step.

VII. ALGORITHM INITIALIZATION

The EM algorithms proposed in Section III, Section V, and
Section VI require proper initialization of both the weights
(one for each observation and either a fixed value wi or
parameters αi, βi) and of the model parameters. The K-
means algorithm is used for an initial clustering, from which
values for the model parameters are computed. In this section
we concentrate onto the issue of weight initialization. An
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Algorithm 1: WD-EM with model selection based on the
MML criterion.

input : X = {xi}ni=1,Klow,Khigh,Θ
(0) =

{π(0)
k ,µ

(0)
k ,Σ

(0)
k }

Khigh

K=1 ,Φ
(0) = {α(0)

i , β
(0)
i }ni=1

output: The minimum length mixture model: Θmin and
the final data weights: Wmin

Set: r = 0,K+ = {k}Khigh

k=1 ,LENmin = +∞
while |K+| ≥ Klow do

repeat
for k = 1 to Khigh do

E-Z step using (16):
η
(r+1)
ik =

π
(r)
k P

(
xi;µ

(r)
k ,Σ

(r)
k ,α

(r)
i ,β

(r)
ik

)
∑Khigh

l=1 π
(r)
l P

(
xi;µ

(r)
l ,Σ

(r)
l ,α

(r)
i ,β

(r)
il

)
E-W step using (19)–(20):

α
(r+1)
i = α

(0)
i + d

2

β
(r+1)
ik = β

(0)
i + 1

2

∥∥∥xi − µ(r)
k

∥∥∥2
Σ

(r)
k

wik =
α

(r+1)
i

β
(r+1)
ik

M-step

π
(r+1)
k =

max
{
0,
∑n

i=1 η
(r+1)
ik −M

2

}
∑Khigh

l=1 max
{
0,
∑n

i=1 η
(r+1)
il −M

2

}
if π(r+1)

k > 0 then
Evaluate θ(r+1)

k : mean µ(r+1)
k using (26)

and covariance Σ
(r+1)
k using (27).

else
K+ = K+ − 1

end
end

Θ(r+1) =
{
π
(r+1)
k ,θ

(r+1)
k

}Khigh

k=1

Compute optimal length LEN
(r+1)
MML with (36).

r ← r + 1

until |∆LEN
(r)
MML| < ε

if LEN
(r)
MML < LENmin then

LENmin = LEN
(r)
MML

Θmin = Θ(r)

Wmin = {wi}ni=1 with wi =
Khigh∑
k=1

ηikwik

end
k∗ = argmink′∈K+

(
π
(r)
k′

)
, K+ = K+/k∗

end

interesting feature of our method is that the only constraint
on the weights is that they must be positive. Initial wi
values may depend on expert or prior knowledge and may be
experiment- or goal-dependent. This model flexibility allows
the incorporation of such prior knowledge. In the absence of
any prior information/knowledge, we propose a data-driven
initialization scheme and make the assumption that densely
sampled regions are more important that sparsely sampled
ones. We note that a similar strategy could be used if one
wants to reduce the importance of dense data and to give more
importance to small groups of data or to sparse data.

We adopt a well known data similarity measure based on the
Gaussian kernel, and it follows that the weight wi associated

with the data point i is evaluated with:

wi =
∑
j∈Sq

i

exp

(
−d

2(xi,xj)

σ

)
, (38)

where d(xi,xj) is the Euclidean distance, Sqi denotes the set
containing the q nearest neighbors of xi, and σ is a positive
scalar. In all the experiments we used q = 20 for the simulated
datasets and q = 50 for the real datasets. In both cases, we
used σ = 100. In the case of the FWD-EM algorithm, the
weights wi thus initialized remain unchanged. However, in
the case of the WD-EM algorithm, the weights are modeled
as latent random variables drawn from a gamma distribution,
hence one needs to set initial values for the parameters of this
distribution, namely αi and βi in (11). Using (12) and (13)
one can choose to initialize these parameters such as αi = w2

i

and βi = wi, such that the mean and variance of the prior
distribution are wi and 1 respectively.

VIII. EXPERIMENTAL VALIDATION

The proposed algorithms were tested and evaluated us-
ing eight datasets: four simulated datasets and four publicly
available datasets that are widely used for benchmarking
clustering methods. The main characteristics of these datasets
are summarized in Table I. The simulated datasets (SIM) are
designed to evaluate the robustness of the proposed method
with respect to outliers. The simulated inliers are drawn from
Gaussian mixtures while the simulated outliers are drawn from
a uniform distribution, e.g. Fig. 1. The SIM datasets have
different cluster configurations in terms of separability, shape
and compactness. The eight datasets that we used are the
following:

• SIM-Easy: Five clusters that are well separated and
compact.

• SIM-Unbalanced: Four clusters of different size and
density.

• SIM-Overlapped: Four clusters, two of them overlap.
• SIM-Mixed: Six clusters of different size, compactness

and shape.
• MNIST contains instances of handwritten digit images

normalized to the same size [25]. We preprocessed these
data with PCA to reduce the dimension from 784 to 141,
by keeping 95% of the variance.

TABLE I: Datasets used for benchmarking and their charac-
teristics: n is the number of data points, d is the dimension of
the data space, and K is number of clusters.

Data Set n d K

SIM-Easy 600 2 5
SIM-Unbalanced 600 2 4
SIM-Overlapped 600 2 4
SIM-Mixed 600 2 6
MNIST [25] 10, 000 141 10
Wav [26] 5, 000 21 3
BCW [27] 569 30 2
Letter Recognition [28] 20, 000 16 26
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(a) SIM-Easy
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(d) SIM-Mixed

Fig. 1: Samples of the SIM dataset with no outliers (top row) and contaminated with 50% outliers (bottom row). The 600
inliers are generated from Gaussian mixtures while the 300 outliers are generated from a uniform distribution.

• Wav is the Waveform Database Generator [26].
• BCW refers to the Breast Cancer Wisconsin data set [27],

in which each instance represents a digitized image of a
fine needle aspirate (FNA) of breast mass.

• Letter Recognition contains 20, 000 single-letter images
that were generated by randomly distorting the images
of the 26 uppercase letters from 20 different commercial
fonts [28]. Each letter/image is described by 16 features.
This dataset is available through the UCI machine learn-
ing repository.

In addition to the two proposed methods (FWD-EM and
WD-EM) we tested the following algorithms:

• GMM uses EM with the standard Gaussian mixture
model, implemented as described in [29];

• GMM+U uses EM with a GMM and with an additional
uniform component, [30];

• FM-uMST stands for the finite mixture of unrestricted
multivariate skew t-distribution algorithm of [8];

• IGMM stands for the infinite Gaussian mixture model
[19];

• I2GMM stands for the infinite mixture of infinite Gaus-
sian mixtures [21];

• K-Means is the standard K-means algorithm;
• KK-Means is the kernel K-means algorithm of [31];
• NCUT is the spectral clustering algorithm of [32].
• HAC is the hierarchical agglomerative clustering algo-

rithm of [33].

All the above algorithms need proper initialization. All
the mixture-based algorithms, WD-EM, FWD-EM, GMM,
GMM+U, FM-uMST, IGMM and I2GMM start from the same
proportions, means, and covariances which are estimated from
the set of clusters provided by K-means. The latter is randomly
initialized several times to find a good initialization. Fur-
thermore, algorithms WD-EM, FWD-EM, GMM, GMM+U

and FM-uMST are iterated until convergence, i.e, the log-
likelihood difference between two consecutive iterations is less
than 1%, or are stopped after 400 iterations.

To quantitatively evaluate all the tested methods, we chose
to use the Davies-Bouldin (DB) index [34]:

DB =
1

K

K∑
k=1

Rk, (39)

where Rk = maxk,k 6=l{(Sk + Sl)/dkl}, Sk =
n−1k

∑
x∈Ck

‖x − µk‖ is the cluster scatter, nk is the
number of samples in cluster k, µk is the cluster center,
and dkl = ‖µk − µl‖. A low value of the DB index
means that the clusters are far from each other with respect
to their scatter, and therefore the discriminative power is
higher. Since the algorithms are randomly initialized, we
repeat each experiment 20 times and compute the mean and
standard deviation of the DB index for each experiment.
Table II summarizes the results obtained with the MNIST,
WAV, BCW, and Letter Recognition datasets. The proposed
WD-EM method yields the best results for the WAV and
BCW data, while the I2GMM method yields the best results
for the MNIST data. It is interesting to notice that the
non-parametric methods K-means, NCUT and HAC yield the
best and second best results for the Letter Recognition data.

For completeness we also provide the micro F1 scores (also
used in [21]) obtained with the MNIST, WAV, BCW and Letter
Recognition datasets in Table III. Based on this classification
score, the proposed WD-EM method yields the best results
for the WAV and BCW data, while the I2GMM yields the best
results for the Letter Recognition data, and the IGMM method
yields the best results for the MNIST data. This comparison
also shows that I2GMM, GMM and GMM+U yield similar
scores.

An interesting feature of the proposed weighted-data clus-
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TABLE II: Results obtained with the MNIST, WAV, BCW, and Letter Recognition datasets. The clustering scores correspond
to the Davies-Bouldin (DB) index. The best results are shown in underlined bold, and the second best results are shown in
bold. The proposed method yields the best results for the WAV and BCW datasets, while I2GMM yields the best results for
the MNIST dataset. Interestingly, the non-parametric methods (K-means, HAC and Ncut) yield excellent results for Letter
Recognition.

Dataset WD-EM FWD-EM GMM GMM+U FM-uMST IGMM I2GMM K-Means KK-Means Ncut HAC

MNIST 2.965(0.15) 3.104(0.21) 3.291(0.14) 3.245(0.09) 2.443(0.00) 3.555(0.06) 2.430(0.14) 2.986(0.01) 2.980(0.02) 4.760(0.08) 3.178(0.00)

WAV 0.975(0.00) 1.019(0.00) 1.448(0.03) 1.026(0.04) 1.094(0.10) 1.028(0.02) 2.537(0.35) 1.020(0.00) 0.975(0.05) 2.781(0.06) 1.089(0.00)

BCW 0.622(0.00) 0.687(0.00) 0.714(0.00) 0.689(0.00) 0.727(0.00) 0.719(0.00) 0.736(0.09) 0.659(0.00) 0.655(0.00) 0.838(0.00) 0.685(0.00)

Letter Recognition 1.690(0.00) 1.767(0.01) 2.064(0.06) 2.064(0.06) 1.837(0.00) 2.341(0.11) 1.724(0.03) 1.450(0.02) 1.504(0.03) 1.626(0.00) 1.626(0.00)

TABLE III: Micro F1 scores obtained on the real data sets (MNIST, WAV, BCW and Letter Recognition). The number in
parenthesis indicates the standard deviation of 20 repetitions. Based on this classification score, I2GMM yields the best result.

Data set WD-EM FWD-EM GMM GMM+U FM-uMST IGMM I2GMM K-Means KK-Means Ncut HAC

MNIST 0.524(0.01) 0.455(0.01) 0.573(0.00) 0.549(0.01) 0.519(0.00) 0.689(0.02) 0.545(0.06) 0.497(0.02) 0.507(0.02) 0.402(0.00) 0.532(0.00)

WAV 0.774(0.00) 0.534(0.00) 0.535(0.00) 0.552(0.00) 0.632(0.08) 0.543(0.01) 0.493(0.00) 0.521(0.00) 0.522(0.00) 0.387(0.00) 0.597(0.00)

BCW 0.965(0.00) 0.907(0.00) 0.885(0.00) 0.915(0.00) 0.927(0.00) 0.914(0.00) 0.682(0.00) 0.907(0.00) 0.910(0.00) 0.859(0.00) 0.879(0.00)

Letter Recognition 0.315(0.01) 0.323(0.00) 0.423(0.00) 0.423(0.00) 0.379(0.00) 0.306(0.02) 0.466(0.01) 0.340(0.00) 0.343(0.01) 0.347(0.00) 0.347(0.00)

TABLE IV: DB scores obtained on the SIM-X dataset (best and second best).

Outliers WD-EM FWD-EM GMM GMM+U FM-uMST IGMM I2GMM K-Means KK-Means Ncut HAC

SI
M

-E
as

y

10% 0.229(0.01) 0.295(0.01) 0.295(0.01) 0.222(0.02) 0.307(0.02) 1.974(0.12) 0.500(0.16) 0.291(0.01) 0.330(0.07) 0.283(0.01) 0.266(0.00)

20% 0.266(0.02) 0.338(0.01) 0.342(0.01) 0.233(0.01) 0.349(0.02) 1.564(0.43) 0.626(0.28) 0.344(0.01) 0.420(0.10) 0.335(0.01) 0.330(0.01)

30% 0.330(0.01) 0.385(0.01) 0.384(0.02) 0.227(0.02) 0.501(0.04) 1.296(0.12) 0.570(0.27) 0.372(0.01) 0.381(0.03) 0.366(0.02) 0.376(0.01)

40% 0.358(0.01) 0.445(0.04) 0.453(0.05) 0.211(0.02) 0.585(0.06) 1.259(0.16) 0.534(0.21) 0.417(0.01) 0.411(0.01) 0.409(0.01) 0.401(0.01)

50% 0.380(0.01) 0.455(0.02) 0.459(0.02) 0.195(0.01) 0.568(0.05) 1.107(0.06) 0.626(0.21) 0.422(0.01) 0.439(0.03) 0.422(0.01) 0.438(0.01)

SI
M

-U
nb

al
an

ce
d 10% 0.270(0.01) 0.954(0.72) 1.354(1.02) 0.277(0.01) 1.104(0.76) 1.844(0.29) 0.491(0.17) 0.405(0.02) 0.433(0.05) 0.402(0.02) 0.427(0.02)

20% 0.329(0.03) 4.503(4.33) 3.003(1.85) 0.269(0.01) 1.181(0.44) 1.278(0.45) 0.591(0.13) 0.512(0.02) 0.515(0.03) 0.477(0.03) 0.529(0.02)

30% 0.399(0.03) 3.502(3.09) 2.034(1.22) 0.252(0.03) 1.414(0.88) 1.272(0.35) 0.601(0.10) 0.548(0.03) 0.540(0.03) 0.531(0.02) 0.570(0.03)

40% 0.534(0.13) 2.756(2.33) 2.097(1.15) 0.251(0.02) 1.650(0.94) 1.239(0.36) 0.615(0.05) 0.557(0.03) 0.567(0.02) 0.563(0.02) 0.597(0.02)

50% 0.557(0.10) 2.400(1.44) 1.520(0.38) 0.268(0.01) 1.612(0.69) 1.144(0.36) 0.665(0.10) 0.580(0.03) 0.585(0.03) 0.583(0.03) 0.636(0.02)

SI
M

-O
ve

rl
ap

pe
d 10% 0.305(0.02) 0.693(0.31) 1.510(0.97) 0.307(0.02) 1.373(0.63) 2.168(0.20) 0.554(0.14) 0.395(0.03) 0.428(0.06) 0.385(0.01) 0.427(0.01)

20% 0.368(0.03) 1.562(0.45) 1.881(0.50) 0.293(0.01) 2.702(1.28) 1.837(0.37) 0.608(0.08) 0.467(0.02) 0.532(0.07) 0.440(0.02) 0.502(0.01)

30% 0.472(0.04) 1.825(0.55) 2.209(0.64) 0.294(0.03) 5.101(1.99) 1.568(0.61) 0.586(0.15) 0.532(0.02) 0.521(0.03) 0.508(0.01) 0.557(0.01)

40% 0.549(0.04) 2.372(0.54) 2.597(0.73) 0.322(0.01) 4.569(1.72) 1.320(0.40) 0.687(0.11) 0.546(0.02) 0.556(0.03) 0.541(0.03) 0.593(0.02)

50% 0.641(0.06) 2.269(0.44) 2.247(0.60) 0.298(0.02) 5.762(3.34) 1.174(0.25) 0.815(0.12) 0.563(0.03) 0.576(0.02) 0.560(0.03) 0.618(0.02)

SI
M

-M
ix

ed

10% 0.282(0.01) 0.443(0.11) 0.448(0.11) 0.290(0.01) 0.951(0.35) 2.032(0.46) 0.414(0.12) 0.358(0.01) 0.418(0.06) 0.359(0.01) 0.355(0.01)

20% 0.351(0.02) 0.857(0.52) 1.325(0.79) 0.286(0.01) 1.062(0.38) 1.782(0.44) 0.462(0.08) 0.413(0.02) 0.476(0.06) 0.409(0.01) 0.428(0.01)

30% 0.396(0.02) 1.368(0.74) 1.524(0.64) 0.278(0.01) 1.693(0.56) 1.627(0.54) 0.483(0.07) 0.454(0.02) 0.464(0.04) 0.449(0.01) 0.468(0.01)

40% 0.449(0.03) 1.100(0.61) 1.188(0.59) 0.277(0.02) 1.609(0.43) 1.456(0.34) 0.483(0.05) 0.478(0.02) 0.504(0.04) 0.478(0.01) 0.508(0.02)

50% 0.492(0.03) 1.364(0.59) 1.513(0.67) 0.265(0.01) 1.972(0.86) 1.366(0.29) 0.562(0.04) 0.501(0.01) 0.515(0.02) 0.499(0.02) 0.546(0.02)

tering algorithms is their robustness in finding good clusters in
the presence of outliers. To illustrate this ability we ran a large
number of experiments by adding outliers, drawn from a uni-
form distribution, to the four simulated datasets, e.g. Table IV
and Fig. 2. A comparison between WD-EM, FWD-EM, and
the state-of-art clustering techniques mentioned above, with
different percentages of outliers, is provided. As it can be
easily observed in these tables, GMM+U performs extremely
well in the presence of outliers, which is not surprising since
the simulated outliers are drawn from a uniform distribution.
Overall, the proposed WD-EM method is the second best
performing method. Notice the very good performance of the
Ncut method for the SIM-overlapped data. Among all these
methods, only GMM+U and WD-EM offer the possibility to
characterize the outliers using two very different strategies.The

GMM+U model simply pulls them in an outlier class based on
the posterior probabilities. The WD-EM algorithm iteratively
updates the posterior probabilities of the weights, and the final
posteriors, (18), allow to implement a simple outlier detec-
tion mechanism. Another important remark is that WD-EM
systematically outperforms FWD-EM, which fully justifies the
proposed weighted-data model. Fig. 2 shows results of fitting
the mixture models to SIM-mixed data drawn from a Gaussian
mixture and contaminated with 50% outliers drawn from a
uniform distribution. These plots show that GMM, IGMM, and
I2GMM find five components corresponding to data clusters
while they also fit a component onto the outliers, roughly
centered on the data set.
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EM-WD

(a) WD-EM

FWD-EM

(b) FWD-EM

GMM

(c) GMM

EM-WD

(d) GMM+U

GMM+U

(e) FM-uMST

FM-uMST

(f) IGMM

GMM

(g) I2GMM

Ground Truth

(h) Ground Truth

Fig. 2: Results obtained by fitting mixture models to the SIM-Mixed data in the presence of 50% outliers (see Table IV).

IX. AUDIO-VISUAL CLUSTERING

In this section we illustrate the effectiveness of our method
to deal with audio-visual data which belong to the heteroge-
nous type of data, i.e. gathered with different sensors, having
different noise statistics, and different sources of errors. The
challenges of clustering audio-visual data were enumerated
in Section I. Prior to clustering one needs to represent audio
and visual observations in the same Euclidean space, e.g.
Fig. 3. Without loss of generality we adopt the sound-source
localization method of [35] that performs 2D direction of
arrival (DOA) estimation followed by mapping the estimated
sound-source direction onto the image plane: a DOA estimate
therefore corresponds to a pixel location in the image plane.
To find visual features, we use an upper-body detector [36]
that provides an approximate localization of human heads,
followed by lip localization using facial landmark detection
[37]. The rationale of combining upper-body detection with
facial landmark localization is that, altogether this yields a
detection and localization algorithm that is much more robust
to head pose than the vast majority of face detection methods.

Let A = {aj}na
j=1 ∈ R2 and V = {vj}nv

j=1 ∈ R2

denote the set of auditory and visual observations respec-
tively. To initialize the weight variables, we use (38) in the
following way. An auditory sample is given a high initial
weight if it has many visual samples as neighbors, or wai =∑
vj∈V exp(−d2(ai,vj)/σ). Visual weights are initialized in

an analogous way, wvi =
∑
aj∈A exp(−d2(vi,aj)/σ). As

illustrated below, this cross-modal weighting scheme favors
clusters composed of both auditory and visual observations.
We recorded three sequences:

• The fake speaker (FS) sequence, e.g. first and second
rows of Fig. 4, consists of two persons facing the camera
and the microphones. While the person onto the right
emits speech signals (counting from “one” to “ten”) the

person onto the left performs fake lip, facial, and head
movements as he would speak.

• The moving speakers (MS) sequence, e.g. third and
fourth rows of Fig. 4, consists of two persons that move
around while they are always facing the cameras and

Fig. 3: Audio-visual data acquisition and alignment. Top: left-
and right-microphone signals. A temporal segment of 0.4 s is
outlined in red. Middle: Binaural spectrogram that corresponds
to the outlined segment. This spectrogram is composed of
50 binaural vectors, each one being associated with an audio
frame (shown as a vertical rectangle). Bottom: video frames
associated with a segment. A sound-source direction of arrival
(DOA) is extracted from each binaural vector and mapped onto
the image plane, hence each green dot in the image plane
corresponds to a DOA.
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microphones. The persons take speech turns but there is
a short overlap between the two auditory signals.

• The cocktail party (CP) sequence, e.g. fifth and sixth
rows of Fig. 4, consists of four persons engaged in an
informal dialog. The persons wander around and turn
their heads towards the active speaker; occasionally two
persons speak simultaneously. Moreover the speakers do
not always face the camera, hence face and lip detec-
tion/localization are unreliable.

The visual data are gathered with a single camera and the
auditory data are gathered with two microphones plugged into
the ears of an acoustic dummy head, referred to as binaural
audition. The visual data are recorded at 25 video frames per
second (FPS). The auditory data are gathered and processed
in the following way. First, the short-time Fourier transform
(STFT) is applied to the left- and right-microphone signals
which are sampled at 48 KHz. Second, the left and right
spectrograms thus obtained are combined to yield a binaural
spectrogram from which a sound-source DOA is estimated. A
spectrogram composed of 512 frequency bins is obtained by
applying the STFT over a sliding window of width 0.064 s and
shifted along the signal with 0.008 s hops. An audio frame,
or 512 frequency bins, is associated with each window, hence
there are 125 audio frames per second (with 0.056 ms overlap
between consecutive frames). Both the visual and audio frames
are further grouped into temporal segments of width 0.4 s,
hence there are 10 visual frames and 50 audio frames in each
segment.

As already mentioned, we follow the method of [35] to
extract a sound-source DOA from each audio frame. In order
to increase the robustness of audio localization, a voice activity
detector (VAD) [38] is first applied to each frame, such that not
all the frames have DOA estimates associated with them. On
an average there are 40 audio DOA observations per segment.
The FS sequence contains 28 segments, the MS sequence
contains 43 segments, while the CP sequence contains 115
segments. The left hand sides of Fig. 4 show the central frame
of a segment with all the visual features (blue) and auditory
features (green) available within that segment.

We tested the proposed WD-EM algorithm on these audio-
visual data as well as the GMM+U [30] and FM-uMST [8]
algorithms. We chose to compare our method with these two
methods for the following reasons. Firstly, all three methods
are based on finite mixtures and hence they can use a model
selection criterion to estimate the number of components in
the mixture that best approximates clusters in the data. This is
important since the number of persons and of active speakers
among these persons are not known in advance. Secondly, as
demonstrated in the previous section, these three methods yield
robust clustering in the presence of outliers.

WD-EM uses the MML criterion for model selection as
described in Section VI. We implemented a model selection
criterion based on BIC to optimally select the number of com-
ponents with GMM+U and FM-uMST. While each algorithm
yields an optimal number of components for each audio-visual
segment, not all them contain a sufficient number of audio and

TABLE V: The correct detection rates (CDR) obtained with
the three methods for three scenarios: fake speaker (FS),
moving speakers (MS), and cocktail party (CP).

Scenario # Segments WD-EM GMM-U [30] FM-uMST [8]

FS 28 100.00% 100.00% 71.43%

MS 43 83.87% 61.90% 72.22%

CP 115 65.66% 52.48% 49.57%

visual observations, such that the component can be associated
with an active speaker. Therefore, we apply a simple two-step
strategy, firstly to decide whether a component is audio-visual,
audio-only, or visual-only, and secondly to select the best
audio-visual components. Let nv and na be the total number
of visual and audio observations in a segment. We start by
assigning each observation to a component: let nka and nkv
be the number of audio and visual observations associated
with component k. Let rk = min{nka, nkv}/(na+nv) measure
the audio-visual relevance of a component. If rk ≥ s then
component k corresponds to an active speaker, with s being a
fixed threshold.

Fig. 4 shows examples of applying the WD-EM, GMM+U
and FM-uMST algorithms to the three sequences. One may
notice that, while the visual observations (blue) are very
accurate and form small lumps around the moving lips of
a speaker (or of a fake speaker), audio observations (green)
are very noisy and have different statistics; this is due to the
presence of reverberations (the ceiling in particular) and of
other sound sources, such as computer fans. The ground-truth
active speaker is shown with a yellow frame. The data clusters
obtained by the three methods are shown with red ellipses. A
blue disk around a cluster center designates an audio-visual
cluster. Altogether, one may notice that the proposed method
outperforms the two other methods. An interesting feature
of WD-EM is that the weights give more importance to the
accurate visual data (because of the low-variance groups of
observations available with these data) and hence the audio-
visual cluster centers are pulled towards the visual data (lip
locations in these examples).

To further quantify the performance of the three methods,
we carefully annotated the data. For each segment, we identi-
fied the active speaker and we precisely located the speaker’s
lips. Let xg be the ground-truth lip location. We assign xg to
a component by computing the maximum responsibility (16)
of xg . When xg is assigned to an audio-visual cluster, an
active speaker is said to be correctly detected if the posterior
probability of xg is equal or greater than 1/K, where K is
the number of components. Table V summarizes the results
obtained with the three methods.

X. CONCLUSIONS

We presented a weighted-data Gaussian mixture model. We
derived a maximum-likelihood formulation and we devised
two EM algorithms, one that uses fixed weights (FWD-
EM) and another one with weights modeled as random vari-
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Data & Active speaker WD-EM GMM+U FM-uMST

FS-A Correct Correct Correct

FS-B Correct Correct Incorrect

MS-A Correct Correct Correct

MS-B Correct Incorrect Incorrect

CP-A Correct Correct Incorrect

CP-B Correct Incorrect Correct

Fig. 4: Results obtained on the fake speaker (FS), moving speaker (MS) and cocktail party (CP) sequences. The first column
shows the audio (green) and visual (blue) observations, as well as a yellow bounding box that shows the ground-truth active
speaker. The second, third and fourth columns show the mixture components obtained with the WD-EM, GMM+U and FM-
uMST methods, respectively. The blue disks mark components that correspond to correct detections of active speakers, namely
whenever there is an overlap between a component and the ground-truth bounding box.
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ables (WD-EM). While the first algorithm appears to be a
straightforward generalization of standard EM for Gaussian
mixtures, the second one has a more complex structure. We
showed that the expectation and maximization steps of the
proposed WD-EM admit closed-form solutions and hence the
algorithm is extremely efficient. Moreover, WD-EM performs
much better than FWD-EM which fully justifies the proposed
generative probabilistic model for the weights. We extended
the MML-based model selection criterion proposed in [15] to
the weighted-data Gaussian mixture model and we proposed
an algorithm that finds an optimal number of components
in the data. Interestingly, the WD-EM algorithm compares
favorably with several state-of-the-art parametric and non-
parametric clustering methods: it performs particularly well
in the presence of a large number of outliers, e.g. up to 50%
of outliers. Hence, the proposed formulation belongs to the
robust category of clustering methods.

We also applied WD-EM to the problem of clustering
heterogenous/multimodal data sets, such as audio-visual data.
We briefly described the audio-visual fusion problem and
how it may be cast into a challenging audio-visual clustering
problem, e.g. how to associate human faces with speech
signals and how to detect and localize active speakers in
complex audio-visual scenes. We showed that the proposed
algorithm yields better audio-visual clustering results than two
other finite-mixture models, and this for two reasons: (i) it is
very robust to noise and to outliers and (ii) it allows a cross-
modal weighting scheme. Although not implemented in this
paper, the proposed model has many other interesting features
when dealing with multimodal data: it enables to balance the
importance of the modalities, to emphasize one modality, or to
use any prior information that might be available, for example
by giving high weight priors to visual data corresponding to
face/lip localization.
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