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Abstract—Dynamical variational auto-encoders (DVAEs) are a
class of deep generative models with latent variables, dedicated to
time series data modeling. DVAEs can be considered as extensions
of the variational autoencoder (VAE) that include the modeling of
temporal dependencies between successive observed and/or latent
vectors in data sequences. Previous work has shown the interest
of DVAEs and their better performance over the VAE for speech
signals (spectrogram) modeling. Independently, the VAE has been
successfully applied to speech enhancement in noise, in an unsu-
pervised noise-agnostic set-up that does not require the use of a
parallel dataset of clean and noisy speech samples for training,
but only requires clean speech signals. In this paper, we extend
those works to DVAE-based single-channel unsupervised speech
enhancement, hence exploiting both speech signals unsupervised
representation learning and dynamics modeling. We propose an
unsupervised speech enhancement algorithm based on the most
general form of DVAEs, that we then adapt to three specific
DVAE models to illustrate the versatility of the framework.
More precisely, we combine DVAE-based speech priors with a
noise model based on nonnegative matrix factorization, and we
derive a variational expectation-maximization (VEM) algorithm
to perform speech enhancement. Experimental results show that
the proposed approach based on DVAEs outperforms its VAE
counterpart and a supervised speech enhancement baseline.

Index Terms—Speech enhancement, dynamical variational au-
toencoders, nonnegative matrix factorization, variational infer-
ence.

I. INTRODUCTION

PEECH enhancement is a classical and fundamental prob-

lem in speech processing [1]], [2]]. It aims at recovering
a clean speech signal which has been corrupted by acoustic
(background) noise, possibly in a wide variety of scenarios,
i.e. different noise types and signal-to-noise power ratios.
Classical “signal-processing-based” solutions include spectral
subtraction [3]], Wiener filtering [4]], which use noise (and pos-
sibly clean speech) power spectral density estimate(s) obtained
from the noisy signal, and the short-time spectral amplitude
estimator [5]].

Recently, the impressive advances in deep neural networks
(DNNs) and deep learning (DL) have opened new possibilities
to tackle this task. The most common approach to DL-based
speech enhancement, that has been widely studied in the
past years, is a supervised one, where pairs of noisy and
clean speech signals are used during model training. With
a large amount of such training data, DNNs can efficiently
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learn a mapping from noisy speech signals either directly to
clean speech signals or to time-frequency denoising masks
that are applied to the noisy signal; see a review in [6]]
and see Section [[I] for other recent examples of works in
this line. However, this set of methods can suffer from poor
generalization to unseen noise type and acoustic conditions.

In contrast to the supervised methods, unsupervised meth-
ods, more sparsely considered in the literature, model the
clean speech signal, and thus only require a clean speech
dataset at training time. These methods estimate the noise
properties at test time, while performing speech enhancement
In particular, the variational auto-encoder (VAE) [[11], [12] is a
deep generative model that has proven successful for unsuper-
vised speech enhancement, both in single-channel [|13[—[16]]
and multi-channel [[17]-[19] configuration. Typically, a VAE
is trained with clean speech signals to learn a deep latent
variable model for clean speech (in the short-term Fourier
transform (STFT) domain). At test time, where only noisy
speech signals are observed, the pre-trained VAE is combined
with a noise model, usually based on nonnegative matrix
factorization (NMF) [20]], to formulate the mixture model.
The latent variables of the clean speech signal, as well as
the parameters of the noise model, are then estimated, which
enables to design a denoising Wiener-like filter.

Although this approach has shown very interesting results,
in particular robustness to different types of noise, almost all
previous works considered the original VAE where speech
time frames are processed independently. The independence of
successive speech frames in a VAE is a too strong and clearly
suboptimal assumption, since the model will not exploit the
speech signal (spectrogram) dynamics. Yet, in the last years, a
number of extensions of the VAE have been proposed to model
sequential data, with explicit modeling of the dependencies
between successive vectors of latent and observed variables
[21]-[29]. In [30], we performed an extensive and compre-
hensive literature review of these models. We introduced a
general class of models called Dynamical Variational Au-
toencoders (DVAEs) that encompasses and unifies the above-
cited temporal VAE extensions, and other possible ones. We
also showed that all reviewed DVAEs outperform the VAE in

INote that this setting was referred to as “semi-supervised” in previous
works on audio source separation [7]-[9]. However, we choose to call it
here unsupervised because in the machine learning literature, semi-supervised
usually refers to methods that are trained from both labeled and unlabeled
datasets (e.g. [10])). In this context, a semi-supervised speech enhancement
method would be trained from both a labeled dataset of noisy and clean
speech signal pairs, and an unlabeled dataset containing only noisy or clean
speech. This is not the case in the present study, where the training dataset
only contains clean speech signals.



the speech analysis-resynthesis task, which shows the benefit
of considering temporal correlations when modeling speech
signal. Although, this opens a large set of possibilities for
joint unsupervised speech representation learning and speech
dynamics modeling, to the best of our knowledge, only one
DVAE model, so-called Recurrent VAE (RVAE), has been used
for speech enhancement so far, in our previous work [28]].

In the present paper, we present a general framework to
use DVAESs in unsupervised speech enhancement: We use the
most general formulation of a DVAE to develop the general
formulation of DVAE-based unsupervised speech enhance-
ment. Similar to the aforementioned unsupervised methods
based on the original VAE, we use DVAEs to model clean
speech signals at training time. Pre-training on clean speech
can provide a well estimated generative model (also referred to
as decoder) and a well estimated inference model (also referred
to as encoder). To tackle the speech enhancement problem, we
consider the noisy signals as a mixture of clean speech signal
(modulated with a frequency-independent gain), and additive
noise modeled by NMF. We develop a generic variational
expectation-maximization (VEM) [31]] algorithm for speech
enhancement compatible with all DVAE models. At the E-
step, the encoder of a DVAE is fine-tuned to approximate the
posterior distribution of the latent variables of clean speech,
whereas the NMF parameters and the gain are estimated
at M-step. Then the clean speech can be estimated with a
probabilistic Wiener filter. To illustrate the versatility of this
approach, we apply it to three examples of DVAEs, namely the
Deep Kalman Filter (DKF) [23]], [24], the Stochastic Recurrent
Neural Network (SRNN) [26]] and the above-mentioned RVAE.

The rest of the paper is organized as follows. Section
gives further informations on related works. Section [l1I} briefly
reviews the VAE and DVAE models, rapidly present the above-
mentioned three examples of DVAEs, and discusses a few
issues of modeling speech signals with DVAEs. Then, in
Section we present the proposed DVAE-based speech
enhancement algorithm in detail. Section |V|present a series of
experiments conducted with the three example DVAE models.
Section [V concludes the paper.

II. RELATED WORK

Deep learning based speech enhancement models have been
widely studied over the past decade. According to the type of
input and output data, they can be divided into two categories.
In supervised methods, discriminative patterns of speech and
noise are learned from training data with noisy-clean speech
pairs [6], whereas unsupervised speech enhancement models
do not. Since this paper aims at single-channel speech en-
hancement, the related work on multi-channel are out of the
scope of this section.

Deep supervised approaches for speech enhancement were
first proposed in [32], [33], where DNNs pretrained with
restrictive Boltzmann machine (RBM) were used as binary
classifiers to the time-frequency (T-F) spectrogram of noisy
speech. Unlike T-F masking methods, [34] proposed a deep
auto-encoder (DAE) to learn a mapping from noisy speech to
clean speech on the Mel-frequency power spectrum (MFP).

The DAE in [34] is a stack of multiple pretrained auto-
encoders (AEs) and will be further fine-tuned after stacking
all AEs with pretrained parameters for initialization. Different
from previous methods that process the (log-)magnitude spec-
trum only, [34] proposed to use fully convolutional network
(FCN) for speech enhancement on raw waveform. Further-
more, rather than using discriminative approaches, [35] use
generative adversarial networks (GAN) to directly learn to
generate the clean waveform, where noisy waveform was en-
coded as additional layer-by-layer conditions for the generator
with decoder structure to output a clean speech.

Alternatively, unsupervised methods do not use noisy-clean
speech pairs for training, thus avoiding potential robustness
issues against unknown acoustic environments. [|13[] proposed
to use VAE to learn a prior distribution on clean speech.
At test time, the noise signal is characterized by a Bayesian
NMF model whose parameters, as well as the VAE latent
variables, are estimated with a Markov chain Monte Carlo
(MCMC) algorithm. At each step of the iterative algorithm, the
NMF parameters are sampled following a Gibb-sampling-like
scheme, whereas the VAE latent variables are sampled with
a Metropolis-Hastings algorithm. [14]] added a gain parameter
for clean speech to provide more robustness with respect to the
loudness of the training examples. Different from [[13]], [|14]]
derived a Monte Carlo expectation-maximization (MCEM)
algorithm for inferring the latent variables in the VAE and
estimating the mixture model parameters. [15] proposed to
use an alpha-stable distribution for the noise model, instead
of the Gaussian assumption. [[16] developed an iterative vari-
ational inference method based on an extended set of latent
variables and leveraging the already-trained VAE encoder. This
approach is computationally efficient since it does not require
sampling or gradient descent at each step of the algorithm.
More recently, a guided VAE was proposed in [36], where the
VAE-based clean speech signal prior is defined conditionally
on the voice activity detection or the ideal binary mask.
This guiding information has to be provided by a supervised
classifier, separately trained on noisy speech signals.

Most of the VAE-based unsupervised speech enhancement
studies published so far focus on exploiting different prob-
ability distributions for the latent variables and/or deriving
efficient inference and learning algorithms. Very few stud-
ies deal with the inherent limitation of the VAE to handle
sequential data, that is sequences of samples that are not
statistically independent, as is the case of speech data. To
the best of our knowledge, only [28] and [37] proposed
generative approaches to speech enhancement based on VAE
variants that can learn temporal dependencies in the speech
model. While [28] proposed a recurrent VAE (RVAE) based
on standard recurrent neural networks (RNNs), [37] used
stochastic temporal convolutional network (TCNs) [38]], [39],
allowing the latent variables to have both hierarchical and
temporal dependencies.

Besides the above-mentioned previous work on temporal
modeling for speech enhancement, other studies have focused
on developing extensions of the original VAE for time series.
The Deep Kalman Filter (DKF) [23]] combines state-space
models and VAEs for sequential data modeling. DKF can be



seen as a standard VAE with an additional non-linear first-
order Markov model on the latent vectors. It was further
developed in [24] by considering an inference model that is
consistent with the exact posterior structure, in terms of ran-
dom variable dependencies. The Stochastic Recurrent Neural
Network (SRNN) [26] is another temporal extension of the
VAE, with a more complex dynamical generative modeling of
the observed and latent data sequences, involving infinite-order
temporal dependencies implemented with RNNs. Unlike the
original VAE [11]], [12]] and RVAE [28]] which assume indepen-
dent and identically distributed latent vectors, both DKF and
SRNN consider a first-order dependency between successive
latent vectors. Actually, RVAE [28]], DKF [23], [24], SRNN
[26] and several other temporal extensions of the VAE [21],
[22], [25]l, [27], [29] can all be seen as particular instances of
a general class of models called Dynamical Variational Auto-
encoders (DVAEs), which have been recently reviewed in [30].
These particular models arise from conditional independence
assumptions made when factorizing the joint distribution of
observed and latent data sequences, using the chain rule. The
present paper is the first in-depth study regarding the use of
DVAEs, as a general class of models, for unsupervised speech
enhancement.

III. DVAE AND SPEECH MODELING

In this section, we first review the standard VAE [[11], [12]
and its extensions to temporal models, which are referred to
as DVAEs [30]. Then, we briefly introduce speech modeling
using DVAE models. In the end of this section, we describe
the practical implementation of three typical DVAE models.

A. VAEs and DVAEs

To define a VAE, we assume that an observed variable
s of dimension F' is generated from an unobserved random
variable z of dimension L. This unobserved variable, also
called latent variable, has a much lower dimension than the
observed variable, i.e. L < F'. Let pg(s,z) = pe,(s|z)pe,(2)
be the parametric generative model of their joint distribution,
where 8 = 05 U 0, denotes the set of parameters. Given a
dataset S = {s,,}2"_; which consists in N i.i.d. samples of
s, we are typically interested in finding € that maximizes the
log-likelihood of S:

N N
logp0(S) = Y 1ogpo(s.) = > 108 [ po, (5 /2)po. (20
n=1

n=1

D
where z,, is the latent variable corresponding to s,,. In general,
a latent vector z is generated from a very simple prior distri-
bution, typically pe, (z) = N (z;0, I) whereas s is generated
by a complex nonlinear function of z, typically a deep neural
network (DNN) (and 65 is the set of parameters of this DNN).
The complexity of the resulting likelihood pg_(s|z) makes
this latent variable model expressive, but it also makes the
marginal likelihood (or evidence) in (I)) intractable. Therefore,

2N\ denotes the multivariate Gaussian distribution. We can remark that,
here, 8, = (.

instead of directly maximizing log pg(S), an inference model
qe(z|s) = pe(z|s) is introduced, which is also defined by
a DNN (of parameters ¢), and then the VAE is trained by
maximizing the evidence lower bound (ELBO) defined by
(for a single pair of observed/latent vectors):

Lo.p(s) = Ey,(z)s) [logpa(s,z) — log g4 (z[s)]
= logpe(s) — Dk 1 (4¢(2ls)|[pe(z[s)) .

where D (.) denotes the Kullback-Leibler (KL) divergence.
The KL divergence is always non-negative and thus the ELBO
is a lower bound of the intractable log-marginal likelihood of
the data. Using the reparameterization trick described in [11],
[12], the generative model pg(s|z) and the inference model
¢¢(z|s) can be trained jointly by maximizing the ELBO over
the training dataset.

While standard VAEs assume statistical independence
among observations, DVAEs can be seen as a generalization
of conventional VAEs for modeling sequential data [30]. A
DVAE keeps the global encoder-decoder architecture of the
VAE, but considers a sequence of observed random variables
s1.r = {s; € RF'}T | and a corresponding sequence of latent
variables z1.7 = {z; € RF}1_,. A DVAE is thus defined by
the joint probability density function (pdf) of observed and
latent variables pg(s1.T,21.7), Which can be factorized using
the chain rulef]

2

T
po(S1.T,21.1) = Hpe(st,zt|s1;t71,21;t71) 3)
1

o~
Il

I
o

Peo. (St|sl:t717 Z1;t)P9,(Zt|S1:t71, Z1:t71)'

“4)

Similar to VAEs, the exact posterior distribution pg(z1.7|X1.7)
is not analytically tractable. Consequently, an approximate
posterior distribution gg(z1.7|x1.7) is introduced and it can
be factorized using the chain rule as:

-
Il

1

T
q¢(z1.7[81.1) = HQQS(Zt‘Zl:tflasl:T)- )
=1

Chaining the inference and generation, the training of DVAEs
still aims to maximize the ELBO of observed data, which
is here defined by (for a single observed and latent data
sequence):

£(¢7 0) = Eq¢(zlzT|sl:T) [IHPB(SLT, Zl:T)

—1In QQ’)(ZI:T‘SLT)] .

(6)

Note that when writing a joint distribution as a product
of conditional distributions using the chain rule, a specific
ordering of the variables has to be chosen. Among different
possibilities, we chose a causal ordering to write the factor-
ization in (E]) and @]): The generation of s; and z; uses their
past values sj.;—1 and z;.,—1 (plus z; for generating x;). In

3Also called variational lower bound (VLB) or variational free energy
(VFE).

4Here and in all the following, we take the convention that s1.9 = z1.0 =
(. For t = 1 the first term of the product in (3) and (@) is thus pg(si,z1)
and pg (s1]z1)pe(z1), respectively.



the DVAE literature, almost all models are causaﬂ [30]. Each
of them is easily expressed as a special case of the general
expression (E]) where the dependencies in pg(S¢|S1.t—1,%1.¢)
and pg(z¢|S1.t—1,21.¢—1) are simplified, which may also affect
the inference model g (z1.7[s1.7) in (5). In addition, a given
DVAE model can have different implementation with various
types of deep neural networks, see [30] for an extensive
discussion on this topic.

B. Speech Modeling Using DVAEs

The VAE and the DVAE class of models have been used to
model different kinds of data. In this subsection, we comment
on how to use DVAEs for the modeling of speech signals in the
short-term Fourier transform (STFT) domain. Fig. E] illustrates
this process. Let s1.7 = {s; € C'}1_; denote a sequence of
complex-valued STFT frames, where ¢ is the time-frame index.
Each vector s; = {ss; € (C}J’f:l represents the speech short-
term spectrum at time index ¢, and the index f is the frequency
bin. As indicated above, s1.7 is associated with a sequence of
latent variables z1.r = {z; € R}, which has the same
sequence length 7" and a much lower dimension L < F'.

In speech and audio processing, the Fourier coefficients in
s, € CF are usually assumed to be independent and distributed
according to a complex Gaussian circularly symmetric dis-
tribution [40] (denoted below by N.), whose variance vary
over time and frequency [5], [41]. The circularly symmetric
assumption means that the phase follows a uniform distribution
in [0, 27). This local Gaussian model thus exploits the non-
stationarity and non-whiteness of the signal in the STFT
domain, and it is equivalent to considering that the time-
domain audio signal is a locally stationary Gaussian process
[42]. Thus, for all time frames ¢ € {1,...,T}, the DVAE
generative model of speech signal is defined as follows:

Po. (St|S1:t—1,21.1) = Ne (8,0, 20. 1), (7
o, (z|s1:e—1,21:0-1) = N (263 g, 1, Do, ¢) » 3

where the diagonal covariance matrix g, ; = diag{ve, .}
is provided by a DNN which takes as input the conditioning
variables in (7), namely (s1.;—1,%1.¢—1). Similarly, p_, and
3, = diag{ve, ;} are provided by a DNN which takes as

input the conditioning variables in (8], namely s;.;—1, Zl:t—lﬁ

We collectively denote by 8 = {0, 0,} the parameters of the
neural networks involved in (7)-(8).

Similarly as for the generative model, the general form of
the inference model in a DVAE is given by:

46(2t|Z1:0-1,81.7) = N (285 gy 1) B t) ©)

where py, and Xy, = diag{ve.} are provided by a
neural network which takes as input z;.;—1,s;.7 and whose
parameters are denoted by ¢.

5Except for one called Recurrent VAE (RVAE) that has a non-causal form,
we will specify it later in the speech enhancement section.

61t is important to note that the parameters of the distributions involved in
a DVAE are always functions of the variables that come after the conditioning
bar. In the rest of the paper, we will generally omit to rewrite these variables
in the right-hand-side of the probabilistic modeling equations, for concision,
but we may punctually make these dependencies explicit when it eases the
understanding.

It can be noted that even if the complex-valued vector
sequence si.;—1 or s1.7 is used as a conditioning variable in
the distributions in (7)-(), in practice we use the modulus-
squared values of these variables at the encoder and decoder
input. In other words, the DVAE encoder and decoder distri-
bution parameters are computed using sequences of vectors
with entries equal to |s |2, as illustrated in Fig. |1} Note that
modulus-squared of data is homogeneous with the decoder
output (data variance).

Given the generative model (7)), (8) and the inference model
(@), we can develop the objective ELBO function (for one data
sequence):

L(Sl:T;ov(ﬁ)

= EQd)(Zl:TISl:T) [lnpe(sl:Tazl:T) —1In Q¢(Z1:T‘SI:T)] (10)
FT

< 2

- Z Eq¢(zl:t|51:T) [dIS(lsft| >v95~,ft)]
fit=1

| LT ; voit + (1 o )2
@b,lt b,lt b0t — Mo, It
+5 ) |t - . b

=1 Vg, it Vg, it
where = denotes equality up to an additive constant w.r.t. 6
and ¢, drs(q,p) = q/p — In(q/p) — 1 is the Itakura-Saito
(IS) divergence [20], ve_ ¢+ € Ry is the f-th entry of vg_ ¢,
{ropir € R, o, 1t € Ryvg e € Ry, ve, 11 € Ry} are the I-th
entry of {fy;, e, 1 Ve.ts Vo, 1} TESpectively.

C. DVAEs in practice

In this subsection, we briefly present three representative
DVAE models from the literature (see the review in [30]]) that
can be plugged into the proposed speech enhancement method:

o DKF [23], [24], the simplest DVAE model which is

inspired from conventional state-space models;

« RVAE [28], the only model that was presented in the

literature with a non-causal form [30];

e« SRNN [26], a more complex DVAE model, with an

autoregressive generative modeling of the speech signal.

1) DKF: DKF generative model follows the structure of a
standard state-space model with a first-order Markov model
on the latent vectors, i.e. z; is generated only from z;_;, and
an instantaneous observation model, i.e. s; is generated only
from z;. In summary, DKF generative and inference models
are defined by:

Generation:
T
po(s1.7,21.1) = Hpos(st|zt)poz(zt|zt—1)- (12)
t=1
Inference:
T
qo(z1.7|81:7) = Hq¢(zt|zt—175t:T)~ (13)
t=1

2) RVAE: As opposed to DKF, RVAE does not consider any
dynamical model for the latent vectors, which are assumed
iid., with p(z;) = N(z;0,I). This prior therefore lacks
parameters and does not involve a neural network, as in
standard VAEs. However, the observation model in RVAE is
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Fig. 1. Speech analysis-resynthesis with DVAEs, in the STFT domain. The speech power spectrogram is used as input to the DVAE, and the output is the
variance of a complex Gaussian model in the STFT domain. The audio waveform is reconstructed by inverse STFT using the phase of the original signal.
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Fig. 2. Overview of the proposed speech enhancement method. The pre-trained DVAE is used within a VEM algorithm for speech enhancement (red arrows).
During the E-step the DVAE encoder is fine-tuned (the decoder is fixed), while in the M-step the mixture parameters are estimated. The clean speech signal is
estimated by filtering the noisy signal with a Wiener filtering combining the estimated mixture parameters with the DVAE output parameters (green arrows).

more complex than in DKF: in its causal form, s; is generated
from the current and previous latent variables z;.;, while in its
non-causal form, s; is generated from the complete sequence
of latent vectors z1.7. In short, we have:

Generation:

T
po(sir,z1r) = | [ pe.(si|z1.4)p(z:) (causal). (14)
t=1

T
po(sir, z1r) = [ [ po.(silz1.0)p(z:)  (non-causal). ~ (15)
t=1

Inference:
T
do(z17ls1m) = [ [ 4p(2e|21:40-1,807)  (causal). (16)
t=1
T
g (z1rls1:r) = [ [ 4o (2il21:4-1,51.7)  (non-causal).
t=1
(17)

3) SRNN: In SRNN, the latent vector z; is generated not
only from z;_; (as in DKF), but also from s;.;_;. For the
observation model, s; is generated not only from z; (as in
DKEF) but also from s1.;_1, so that SRNN actually corresponds
to an autoregressive model. The generative and inference
models are defined by:

Generation:

T
po(sir,z1:r) = | [ po.(stlze, s1:0-1)pe, (2e|2e1,51.01).

t=1
(18)

Inference:
T

gg(zrrlsir) = [ [ ap(zelzi1,500).
t=1

IV. DVAE FOR SPEECH ENHANCEMENT

19)

This section describes the DVAE-based speech enhancement
algorithm, where the clean speech is modeled with DVAE and
the noise is modeled with nonnegative matrix factorization
(NMF) [20]. It is an extended version of the algorithm
proposed in [28] for the RVAE model, with a more general
formulation which can be used for speech enhancement with
any other DVAE model. The proposed method is illustrated
in Fig. 2] In practice, we assume that the DVAE-based clean
speech generative and inference models defined in (7)-(8) and
(]9), respectively, have been learned, i.e. the associated param-
eters @ and ¢ have been estimated from a dataset of clean
speech signals during the training stage (see Section [lII-B).
The objective of speech enhancement is to use this pre-trained
model to estimate the clean speech signal when only the noisy
mixture is observed. This is done with a variational expectation
maximization (VEM) algorithm. We recall that this method is
unsupervised, since no clean-noisy speech pairs are used in
this method.

In the rest of this section, we first introduce the unsuper-
vised noise and mixture models, then we develop the general
strategy to estimate the clean speech signal modeled by a
DVAE when only the mixture signal is available, and finally
we present the algorithm to estimate the remaining unknown
model parameters. Throughout this section, s;.;7 = {s; €
(CF};:l, bi.r = {bt S (CF}g;p and x1.7 = {Xt (S (CF}thl
denote respectively a sequence of STFT clean speech frames,
noise frames, and noisy speech frames.



A. Noise and mixture models

As in [14]], [28], we consider a Gaussian noise model with
NMF parameterization of the variance [20]. Independently for
all time frames ¢ € {1, ...,T}, we define:

p(bt) :Nc(bta072b7t)a (20)

where By, ; = diag{(W,Hy). ;} with W, € RT** and H,, €
Rf *T The rank of the factorization K is usually chosen such
that K(F +T) < FT.

We consider that the noisy speech is a mixture of the noise
defined in (20) and the clean speech defined in (7), (8):

Xt = /g5t + by,

where g, € R, is a gain parameter scaling the level of the
speech signal at each time frame. It is frame-dependent but
frequency-independent. The gain parameter enables to take
into account the potentially different loudness between the
speech training examples used to learn the (D)VAE parameters
and the speech test samples in the noisy sequence that we have
to denoise [14].

From (7), and (2I), and by assuming the independence
of the speech and noise signals, we have for all ¢t € {1,...,T}:

ey

po, (Xt | s1:4—1,21:4) = Ne (%430, X0, 1), (22)

where 3¢, = diag{g,ve, +(WpH,). ;} and O is the union
of the speech generative model parameters 85 and the mixture
model parameters ¢ = {g = [g1,...,97]7, Wy, Hp}. As
already mentioned in Section [[l-B} vy, ; is actually a function
of (S1.4—1,21:¢). It can be noted that from (20) and (21)), it is
clear that given the clean speech frame s;, the noisy speech
frame x; is characterized by:

pcp(xt ‘ St) :Nc (Xt;\/975t72b,t)~ (23)

B. Speech reconstruction

Now we consider the problem of reconstructing the clean
speech signal from the observed mixture signal, which consists
in computing the following posterior mean:

8t = Epg (s¢|xr.r) [82]- (24)

In practice, we cannot write the posterior peg(s¢|Xi.1)
analytically, which makes the above expectation intractable.
However, leveraging the speech model defined previously, we
can approximate it by introducing random variables that are
then marginalized.

1) Introducing the past and current latent variables: We
start from marginalizing with respect to the latent variables
Z1:t:

po(st|xi.r) = /p9(5t|zlzt7Xl:T)pG(let‘XlzT)dzlzt
= ]Epe(zl:tlxl:T)[pg(st‘z1:t7X15T)]' (25)

Using 23) to rewrite (24), the estimate of the clean speech
signal at time ¢ is given by:

(26)

St = Epe(zl:t\xl:T) [EPG(Stlzl:t7x1:T)[stH :

Let us now focus on the inner expectation, taken with respect
to pe(st|z1.4,x1.7). We will come back later on the outer
expectation taken with respect to pg(2z1.¢|x1.7). Using Bayes
rule, we have:

Po (Xl:T|St7 Zl:t)pe (St \Z1:t)p9(Z1:t)
Po(Z1:¢, X1:7)

pe(St|Z1:t,X1:T) =

27
X po(X1.7[St, Z1:¢ )6 (S¢|21:¢) (28)
~ po(X¢|s¢)peo(St|z1:4). (29)

The exact computation of pg(x1.7|S¢,21.¢) requires the
marginalisation of pg(X1.7,S1:4—1,t41:7 Zt+1.7|St, Z1:¢) W.LL.
the undesired variables. This would require not only marginal-
ising from future latent codes, but also from past and future
clean speech, which is clearly not feasible. Instead, we con-
sider only the signal mixture model, pg(x¢|s;), defined in (23).

2) Introducing the past speech vectors: Then, it comes to
estimating pg(st|z1.¢) in (29). To do so, we introduce and then
marginalize the past speech vectors sj.4—1:

Do (St|z1:t) = /p0(5t|slzt—1aZl:t)p@(sl:t—l|Z1:t)d51:t—1

t—1
:/p9(5t|slzt—1azlzt) [H pG(ST‘Sl:T—17Z1:T) dsl:t—l
T=1

=Bt potssistir_1,21) [po(stlsit—1,21:4) ], (30)

where in the second line we used the fact that s, is indepen-
dent of z, 1.4 for 7 < t.

When computing (30), we are facing two problems: First the
expectation is intractable; and second, in a speech enhance-
ment framework, we do not have access to the past ground-
truth clean speech vectors Sl:t—l Therefore, we approximate

Do (St|Zz1:t) = po(St|S1:t—1,21:¢)
=N (5;0,30, +(51:4-1,21:¢)) »

where Xg_ ¢(S1:4-1,214) = diag{ve, (S1:¢—1,21:¢)} and
8¢ is computed recursively as §;, = ves,t(§1;t717z1;t)ﬂ In
practice, it means that the decoder output at time frame ¢ — 1
is re-injected at the decoder input at the next time frame £.
This part of the process is only necessary for SRNN, and
more generally for any DVAE autoregressive model. For
non-autoregressive DVAE models, such as RVAE and DKF,
Yo, is only computed from the sequence of latent vectors.

3D

3) Computing the conditional posterior: Substituting (23)

and (31) into (29), we have:
pe(St|Z1:t, X1:T) ~ Nc (Xt; \/@St, Eb,t)Nc (St§ 0, 295,t)

= N(z (St; mg ¢, 2s,t) ; (32)

where
mg; = /50, (9: X6, 1 + Zbs) X, (33)
Sot = Yo, 1 5bt(9: 0.t + Tbt) - (34)

7as opposed to the DVAE training procedure which is done using sequences
of clean speech signals.

8Here we explicitly write the dependency of the covariance matrix on
S1:t—1 and z1.¢, to make the use of the DVAE model clear. In the following
we will omit it again for concision of presentation.



Finally, from (26), (32) and (33), the estimate of the clean
speech signal is given by:

8t = Epg (a1 [x11) [Epo(selzae,xnr)[5t]]

S By anrer) [V, (00,0 + Fn) " X0, 39)

where we recall that Xg_; is actually a function of
(81.t—1,21.t). This estimate can be seen as a “probabilistic”
Wiener filter, i.e. a Wiener filter averaged over all possible
realizations of the latent variables according to their posterior
distribution pg(z1.+|x1.7).

The expectation in is intractable, but similarly as before
we can approximate it by

St ~ /920, (9120, + Eb,t)71 X¢,

where Xg_; = X, (51:4-1,21.¢) and Z1, is sampled from
pe(z1.¢|x1.7). In practice, this posterior distribution is also
intractable, we thus propose a variational approximation
q¢(z1.7|x1.7) whose parameters ¢’ need to be jointly es-
timated together with the noisy mixture model parameters ¢,
in order to compute the speech estimate in (36). As detailed
in the next section, we propose a VEM algorithm to do that.
This generalizes the algorithm developed for RVAE in [28§]] to
the whole class of DVAE models.

(36)

C. VEM algorithm for model parameters estimation

Now that we have an expression for the clean speech signal
estimate, what remains to be estimated is the set of mixture
model parameters ¢ (the NMF noise model parameters and
the gains) and the parameters ¢’ of the variational distribution
q¢ (Zz1.7|x1.7). Using a VEM algorithm, we will maximize the
following ELBO defined from the noisy speech observations
X1.T!

[’(d)lv QO) = quy (zl;T\xl;T)[lanp(Xl:T7 Zl:T)

—1In ¢’ (ZI:T|X1:T)]~ (37)

It can be shown [31] that this corresponds to (i) maximizing
with respect to ¢ a lower bound of the intractable log-marginal
likelihood Inp,(x1.7), and (ii) minimizing with respect to
¢’ the KL divergence between the variational distribution
q¢ (z1.7|x1.7) and the intractable posterior pg(z1.7|x1.7).
The proposed VEM algorithm thus consists in iterating be-
tween the following variational E and M steps.

1) Variational E-step: We consider a variational distribu-
tion of the same form as the DVAE inference model:

T

qe¢’ (zrr|x1T) = H Q¢’(Zt|zlzt71; X1.7),
t=1

(38)

where ¢y (2¢|21:4—1,%1.7) is defined as in (9), except that s,
is replaced by x;. The noisy speech frames can be considered
as out-of-sample data for the DVAE model trained on clean
speech signals [43]. Therefore, similarly as in [28|], we can
simply fine-tune the pre-trained DVAE inference network on
the noisy speech test signal, by maximizing the ELBO in
w.rt. ¢'. This objective function can be developed by

marginalizing and sampling, similarly to what was done in the
previous sub-section. This leads to the following expression:

TR et e el
L(¢',p*)= — Eq,, {lnv(P*,ftJrv ]Jr
f=1t=1 ®rft
L 2
1 P L,
2 Z Z Invg 1 —Inve, 1t — 0atie (o te = o) ;
1=1 t=1 V6,1t

(39)

where x ¢ denotes the f-th entry of x; and * denotes the
current estimate of the mixture model parameters. In practice,
the expectation applied on v+ f¢ is approximated by using

Vo ft = GtVo, £t (S1:4—1,21:¢) + (WpHy) 44, (40)

where we remind that S;.;_; is computed recursively from
the output of the decoder network as explained after equation
(31D, and Z.; is recursively sampled from gy (z1.¢|x1.7) =
Htf:1 d¢ (27]21:7—1,%1.7) as defined in (38). During the vari-
ational E-step, the parameters ¢’ are updated with variants of
gradient ascent, and we denote by ¢'* the resulting parameters
that will be fixed in the M-step.

We recall that the recursive computation of §; is only
required for SRNN, and actually for any DVAE model that
considers an autoregressive process for the generative speech
model. DKF and RVAE, as non-autoregressive models, do not
require estimating these quantities, only sampling the latent
variables Zzi.; is necessary.

2) M-step: The M-step consists in maximizing £(¢", )
wrt ¢ under a non-negativity constraint. Replacing the in-
tractable expectation in (39) with a Monte Carlo estimate
(using actually one single sample), the M-step can be recast
as minimizing the following criterion [|14]:

F T
Clp) =D dis (Jepl* vp.51)

f=1t=1

(41)

where v, f; is defined in (@0). This optimization problem can
be tackled using a majorize-minimize approach [44], which
leads to the multiplicative update rules derived in [14] using
the methodology proposed in [45]:

o1/2
Wi (1X[%2 0 (Va)??)
H,«H, 0 — ;o (42)
e W (V,)© !
©1/2
(X1 © (V.)°~) H]
Wb — Wb @ (Vx)®71 Hl—)r ; (43)
B o1/2
T T 1 [|X|®2 © (VS © <Vx)® 2)}
g <8 0O , (44)

[ v )]

where © denotes element-wise multiplication and exponen-
tiation, and matrix division is also element-wise, Vg, Vi €
RiXT are the matrices of entries vg,, r+ and v, ; respectively,
X € CF*T is the matrix of entries z st and 1 is an all-ones
column vector of dimension F'. Note that non-negativity is



Algorithm 1 DVAE-based unsupervised speech enhancement
Inputs:
>  Pre-trained DVAE model:
4o (z1.7[81:7)
> Noisy speech frames x;.1
Initialization:
> Initialize NMF noise parameters H;, and W, with random
nonnegative values
> Initialize gain parameters g = 1
> Initialize gg(21.¢|X1.7) With pre-trained inference net-
work %(Zl:t\SLT)
while stopping criterion not reached do
E-step:
> Fine-tune gy (21:¢|x1.7) by maximizing (39) w.r.t. ¢
> Sample zi.7 from gg (z1.7[X1:7)
> Compute Xg_; for ¢ = 1 to T using the DVAE

pe(z1.7,s1.7) and

decoder

M-step:

> Update Hy, W, and g using (42)-(@4)
end while
Output:

> Compute the clean speech signal estimate §; for t = 1 to

T using (36)

ensured provided that these parameters are initialized with
non-negative values.

D. Summary

In summary, the clean speech signal estimation consists
in approximating the posterior pg(s|x1.7) and taking the
mean of the resulting approximate distribution (i.e. the Wiener
filter output). The estimation of the involved parameters is
made with the VEM algorithm, which consists in iteratively
fine-tuning the inference network of the pre-trained DVAEs
(E-step) and updating the mixture model parameters ¢ (M-
step). The complete proposed speech enhancement method is
summarized in Algorithm

V. IMPLEMENTATION AND EXPERIMENTS
A. Datasets

a) Clean speech dataset: We used the Wall Street Journal
dataset (WSJO) [46], which is a dataset of clean speech
recorded from Wall Street Journal news at a sampling rate
of 16kHz. We choose the speaker-independent medium vo-
cabulary (5k words) subset. More precisely, the si_tr_s subset
(around 25 hours), the si_dr 05 subset (around 2 hours) and
the si_et_05 subset (around 1.5 hours) were used for DVAEs
training, validation and testing, respectively.

b) Noisy speech dataset: For evaluating speech enhance-
ment methods, we need a dataset of noisy speech signals
along with the ground-truth clean speech, in order to compute
objective performance measures. As will be discussed later,
we will also compare the proposed unsupervised method with
a supervised baseline. The latter requires a labeled dataset of
pairs of noisy and clean speech signals not only for testing,
but also for training and validation. We therefore created the

QUT-WSJO dataset, by mixing the clean speech signals of the
WSJO dataset with noise signals from the QUT-NOISE dataset
[47], including the four noise types {“café”, “home”, “street”,
“car”}. We combined the development/enrollment/verification
splits of the QUT-NOISE dataset, as detailed in [47], with
the above-mentioned training/validation/test splits of the WSJO
dataset. The amount of data in the resulting QUT-WSJO dataset
is the same as in the test subset of WSJO (around 1.5 hours).
The dataset was created as follows. For each utterance of
the WSJO dataset, we randomly selected a noise file from
the QUT-NOISE dataset, in which we randomly selected a
segment of noise signal with the same length as the speech
utterance, we randomly choose a signal-to-noise ratio (SNR)
among {—5,0,5} dB, and we finally mixed the speech and
noise signals at the chosen SNR, using the ITU-R BS.1770-4
protocol [48] to measure the power of the speech and noise
signals[’]

B. Data preprocessing

The DVAEs were trained with power spectrograms of the
speech signals from the WSJO dataset, with the following
preprocessing. We first removed the silences at the beginning
and ending of the files, using a detection threshold of —30 dB.
The waveform was then normalized by its maximum absolute
value. The STFT was computed on the normalized waveform
with a 64-ms sine window (1024 samples) and a 25%-overlap
(256 samples hop length), resulting in a sequence of 513-
dimensional discrete Fourier coefficients (for positive frequen-
cies). We set 7' = 50, meaning that speech utterances of 0.8 s
were extracted to train the DVAE models. In summary, each
training data sequence is a 50 x 513 STFT power spectrogram.
This data preprocessing results in a set of Ny, = 46,578
training sequences (about 10.3 hours of speech signal) and
Ny, = 7,775 validation sequences (about 1.7 hour). For
evaluation, we used the STFT spectrogram of each complete
test sequence (still with silence clipping and normalization),
which can be of variable length, most often larger than 2 s.

C. Evaluation metrics

We used three metrics to evaluate the quality of the recon-
structed speech signals, either in the analysis-resynthesis or the
speech enhancement experiments: The scale-invariant signal-
to-distortion ratio (SI-SDR) in dB [49], the perceptual evalua-
tion of speech quality (PESQ) score (in [—0.5,4.5]) [50], and
the extended short-time objective intelligibility (ESTOI) score
(in [0,1]) [51]. For all measures, a higher value indicates a
better result.

D. Model configurations

Here we present the implementation of the three example
DVAEs that we selected to illustrate the proposed DVAE-
based speech enhancement algorithm, namely DKF, RVAE
and SRNN. As indicated in [30], we can have various imple-
mentations for each DVAE model, thus we only present the

Note that an SNR computed with this protocol is 2.5 dB lower (in average)
than with a simple sum of the squared signal coefficients.



sample

992|211, S1.7)
s

t sample o

T . Wp‘ l]¢(l,|z‘,_1y51;7‘) Z,_ z
cF - A ‘ m
LZ BRNN| D (Dm
g \ [ : :
- . v Z, E, — T T
Zo g, RNN| TR ' B
T oD t t
i GTF MLP ! =9 S ! m | ) ‘
Tl =y , ) [MLP MLP
RNN | . g . RNNJ.
MLP BRNN | MLP | : \
4 t ! T Po,(Z | Zy_1,81.4-1) PoS(S/12S1.-1)
S Po\2))  Ppo(si|z) S Po(5:121:7) S s,_; (or§,_y)
(a) DKF (b) Non-causal RVAE (¢) SRNN

CF | : combiner function (specified in DKF) ‘GTF‘ : gated transition function (specified in DKF)

RNN | /| RNN | : recurrent cell (e.g. LSTM, GRU)

B J €D : feature combination (e.g. concatenation)

BRNN | /| BRNN | : bi-directional recurrent cell (e.g. Bi-LSTM, Bi-GRU)

’ MLP / MLP ] / : multi-layer perceptron (e.g. linear layer, identity layer)

Fig. 3. Model implementation for (a) Deep Kalman Filter (DKF) [23]], [24]], (b) Recurrent Variational Auto-Encoder [28]], and (c) Stochastic Recurrent Neural
Network (SRNN) [26]. Each model consists of an inference (encoder) network (in red) and a generation (decoder) network (in blue). SRNN has a shared

recurrent module between encoder and decoder (

model configurations that showed the best performance in our
experiments (for the latent space dimension selected below).

1) Dimension of the latent space: In the present experi-
ments we set L = 16. We recall that the data dimension is
F = 513. We also recall that z; is a real-valued vector that
is modeled by a Gaussian distribution, so the DNNs modeling
z; have to output two L-dimensional vectors (the mean and
variance vectors) for both inference and generationm whereas
s¢ 1s a complex-valued vector modeled by a circular complex
Gaussian distribution, which only leaves one F'-dimensional
variance vector to be provided by the decoder DNN. To
guarantee the positivity of output variance, we used log-
parameterization (the output is the log-variance in R, which is
then converted to variance by taking the exponential). Please,
note that the last layer to predict mean and log-variance
parameters is always a linear layer, where its output dimension
corresponds to the one of z; (16) or of s; (513). We omit this
in the following description for simplicity.

2) DKF: Fig. Eka) shows the architecture of DKF in our
implementation. We keep the specific Combiner Function and
Gated Transition Function described in [24] for the layers
providing the parameters of the inference and generative
models of z;, respectively. Please refer to this paper for the
implementation details. For the inference model, we also use
a backward long short-term memory (LSTM) [52] layer with
an internal state of dimension 128 in order to accumulate
the information from s;.7 in (]E[) Before being fed into the
recurrent layer, each vector s; passes through an MLP with
one hidden layer of dimension 256 and a tanh activation. The
parameters of the generative model of s; (i.e. the variance
coefficients) are provided by an MLP with 4 hidden layers,

lOCXCSpt when z; is assumed i.i.d. with a standard Gaussian distribution

and no DNN is used for its generation.

), which accumulates the information from past observation vectors.

of dimension 32, 64, 128 and 256, with a tanh activation
function.

3) RVAE: We implemented the non-causal version of
RVAE, and for simplicity, we simply refer to this model as
RVAE in all the following. Fig. 3(b) represents its implemen-
tation. The inference model includes a bi-directional LSTM
(BLSTM) layer with an internal state of dimension 128, which
takes as input the complete sequence si.r. It also includes
an RNN which processes the sampled sequence of the past
latent vectors z;.;—1. The output of these two layers are then
concatenated and mapped into the parameters of the inference
model over z; by an MLP. The generative part of the model
includes a BLSTM layer with an internal state of dimension
128, which takes the sampled z;.7 as input. The output of
this bi-directional LSTM layer is finally mapped into the
parameters of the generative model over s; by the output MLP
(in the present RVAE implementation, this MLP is reduced to
a single linear layer because this led to the best performance).

4) SRNN: SRNN is quite different from the two previous
models. As shown in Fig. Ekc), the inference and generative
models share an internal RNN state vector h; (module
in green) which is encoding the information from the past
observed vectors s1.;—1. This common module is composed
of an MLP with one layer of dime_n>sion 256 followed by a
forward LSTM. The cgmension of h; is 128. For inference,
the concatenation of h; and s; is fed into a one-layer MLP
of dimension 256 followed by a backward LSTM which
provides the vector Et (of dimension 128). This vector is then
concatenated with the sample of z;_; and fed into an MLP
with two hidden layers of dimension 64 and 32 using a tanh
activation function. For the generative part, we concatenate the
shared state h; along with samples of the latent vector at the
previous or current time frame. To generate z;, we use an MLP



TABLE I
AVERAGE SPEECH ANALYSIS-RESYNTHESIS RESULTS.
Models SI-SDR (dB) PESQ ESTOI
VAE 5.3 2.97 0.83
DKF 9.3 3.53 0.91
RVAE (non-causal) 8.9 3.58 0.91
SRNN-TF-True 11.0 3.68 0.93
SRNN-TF-Pred -1.0 1.93 0.64
SRNN-SS 7.8 3.37 0.88

with two hidden layers of dimension 64 and 32, whereas to
generate s; we use an MLP with one hidden layer of dimension
128. These MLPs also use the tanh activation function.

E. SRNN with scheduled sampling

In conventional training of SRNN (and of all autoregressive
DVAE models) we use the ground-truth past clean speech
vectors Si;—1 to generate the current one s;, a strategy
sometimes referred to as “teacher forcing” in the literature
[53]]. We have seen in Section [[V-B2]that this is not possible in
the enhancement algorithm and thus we have replaced sq.;—1
with its proxy si.,—; (recursively computed from the decoder
output). To avoid a mismatch between training and speech
enhancement conditions, we also trained SRNN using S1.;—1
(instead of sj.;—1) to generate s;. It is difficult to directly
train such a model, so we adopted a “scheduled sampling”
approach [54]. We first trained SRNN until convergence using
the ground-truth clean speech signal. Then we fine-tuned the
model by randomly replacing s1.;—1 with S;.;—1 at the input
of the encoder-decoder shared module, when estimating s;.
We replaced 20% of the s;.;—1 vectors for the first 50 epochs,
and increased to 40% for the next 50 epochs, and so on, until
we completely replaced the ground-truth clean speech signal
with generated speech signals. Then we fine-tuned with totally
generated speech signals for another 300 epochs. Overall,
we fine-tuned the model for 500 epochs. These two training
strategies, teacher forcing and scheduled sampling, lead to
two different versions of SRNN, referred to as SRNN-TF and
SRNN-SS respectively. Moreover, when SRNN is trained with
teacher forcing, we test it under two settings: using either
the clean speech vectors si.;—; or their prediction Sq.;_1.
We refer to them as SRNN-TF-True and SRNN-TF-Pred
respectively. Very importantly, we cannot evaluate SRNN-TF-
True for speech enhancement, since SRNN-TF-True requires
access to the ground-truth past clean speech vectors. As we
will see in Sections and [V-I] our experiments demonstrate
the interest of training SRNN with scheduled sampling.

FE. Optimizer

For the training of the three models, we use the Adam
optimizer [55] with a learning rate of 2e —3. We trained the
models with a batch size of 128 during 300 epochs and kept the
one with lowest validation loss. For the fine-tuning to SRNN-
SS, we change the learning rate to le—3.

G. Speech enhancement parameters

For all the methods, the rank of the NMF in the noise model
(20) is set to K = 8. W, and H, are randomly initialized

TABLE II
SPEECH ENHANCEMENT RESULTS (MEDIAN AND CONFIDENCE INTERVAL).

Models SI-SDR (dB) PESQ ESTOI

Noisy mixture —2.6£0.5 1.81 £0.03 0.49+0.01
VAE 4.4+04 1.93+0.05 0.53+0.01
DKF 6.2+1.0 2.21£0.05 0.63+£0.01
RVAE (non-causal) 6.7 £ 1.0 2.38 + 0.04 0.67 £+ 0.01
SRNN-TF-Pred —21+0.3 1.124+0.04 0.404+0.01
SRNN-SS 6.6 +0.9 2.24+£0.05 0.64+0.01
UMX Original 4.8+0.5 2.12+0.04 0.63£0.01
UMX Retrain 6.24+0.4 2.20+0.04 0.65+0.01

from a uniform distribution in [0,1] (with a fixed seed to
ensure fair comparisons), and g is initialized with an all-ones
vector. For computing {I)), we fix the number of samples to
R = 1. The VEM algorithm is run for 500 iterations. We
used Adam [55]] for fine-tuning the encoder during the E-step.
After pilot experiments conducted on the validation set with
different values of the learning rate, this latter was set to 5e—3
for RVAE and 1le—3 for DKF and SRNN.

H. Results of speech analysis-resynthesis

Before we examine the speech enhancement performance,
we first rapidly compare the speech modeling capacities of
the three selected DVAE models (and the original VAE) in a
speech analysis-resynthesis experiment. The overall pipeline is
shown in Fig. [I| For the VAE model, we use the architecture
proposed in [28]]. The mean results averaged over the clean
version of the test dataset are presented in Table [I] (for SI-
SDR scores, the noise is the modeling noise, i.e. the difference
between original and modeled/reconstructed signal).

We can see from Table || that all DVAE models (except
SRNN-TF-Pred) perform largely better than the original VAE,
showing the benefits of introducing dynamics into VAE-
based speech modeling. We can also see that SRNN-TF-
True performs best for speech analysis-resynthesis. This is
not surprising since SRNN-TF-True uses the ground-truth past
sequence si1.;—1, which is a very strong information, to predict
s¢. When at test time s;.;—; is replaced by the correspond-
ing prediction Sj.;_1, i.e. SRNN-TF-Pred, the performance
drops drastically, far below VAE. This justifies the interest of
the scheduled sampling training strategy for SRNN. Indeed,
SRNN-SS performs much better than SRNN-TF-Pred, with
scores that are slightly below the ones of RVAE and DKF.
Overall, among the models that are applicable to the speech
enhancement problem, DKF obtains the best results in terms
of SI-SDR score, followed by RVAE, and then SRNN-SS. In
terms of PESQ and ESTOI scores, DKF and RVAE are very
close. Even if this is not shown in Table [ we can rapidly
mention that the non-causal version of RVAE always performs
better than the causal version.

L. Results of speech enhancement

We report in Table |lI] the speech enhancement results on
the QUT-WSIJO test set, averaged over the three tested SNRs
(=5, 0, 5 dB) and over the 4 noise types, for the different
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DVAE models. The results for the original VAE model are
the ones reported in [28]], which used the same datasets. The
confidence interval for the median is defined as 1.57 times the
interquartile range divided by the square root of the sample
size [56].

We first observe that all DVAE models (except SRNN-
TF-Pred) largely outperform the original VAE model, which
demonstrates the benefits of introducing dynamics into VAE-
based speech modeling for speech enhancement. As could
be expected, SRNN-TF-Pred is inefficient for speech en-
hancement, because of the mismatch between training and
speech enhancement conditions. Among the other different
tested DVAE models, the (non-causal) RVAE performs best
for all evaluation metrics. For example, we have SI-SDR =
6.7 &= 1.0 dB for RVAE vs 4.4 + 0.4 dB for VAE, hence
an improvement of about 2.3 dB. SRNN-SS is here just
0.1 dB below non-causal RVAE, and performs better than
DKF (6.2+ 1.0 dB SI-SDR). PESQ and ESTOI scores follow
the same trend. This confirms the relevance and efficiency
of the scheduled sampling training strategy, in this speech
enhancement context. In terms of PESQ score, the results
are quite consistent between analysis-resynthesis and speech
enhancement (RVAE has the best PESQ score in both task).
We recall that the setting SRNN-TF-True cannot be used
for speech enhancement, since the ground-truth clean speech
vectors are not available.

We also compare with Open-Unmix (UMX), an open-source
supervised method based on a bi-directional LSTM network,
which was state-of-the-art for music source separation [S57],
and was later adapted for speech enhancement [58]]. We chose

this baseline method because it relies on the same type of
recurrent neural networks as the DVAE models considered
in this work. “UMX Original” in Table [[I] indicates that we
use the model of [58] made available by the authors and
trained on the VoiceBank-DEMAND dataset proposed in [59]
(and of course we test it on the QUT-WSJO test set). This
pre-trained supervised model performs notably worse than
the DVAE-based unsupervised methods, e.g. 4.8 = 0.5 dB
SI-SDR vs 6.7 £ 1.0 dB SI-SDR for RVAE. This is likely
to result from a limited generalization capacity, so we also
retrained the UMX model on the QUT-WSJO training set, so
as to have a better match between the training and testing
conditions, and a fair comparison with the proposed DVAE-
based unsupervised methods. The results are shown in Table
under the label “UMX Retrain”. We observe that this retrained
model performs better than the original pre-trained model, e.g.
6.2 £ 0.4 dB SI-SDR, but the performance is still globally
lower than the unsupervised proposed methods (or on par in
the case of DKF). Note that the QUT-WSJO dataset is partic-
ularly challenging for supervised speech enhancement meth-
ods, as for instance the “home” category includes “kitchen”
noise for training, and “living room” noise for validation and
testing, which are quite different sub-categories. The proposed
unsupervised speech enhancement algorithms offer a flexibility
that is useful when supervised methods have difficulties to
generalize to unseen acoustic scenes.

Fig. [] presents the speech enhancement performance in
terms of improvement (or gain) of SI-SDR between input
and output, averaged over the 4 noise types but detailed
as a function of the input SNR. In all the following, we



do not consider SRNN-TF-Pred anymore, since this model
was shown to be inefficient for speech enhancement. The
circumflex accent shape of the curves is often encountered
when reporting improvement over the noisy input [28]], [60]—
[62]. Indeed, when the input is very noisy, it is difficult to
improve the quality. And when the audio is weakly corrupted,
it is also difficult to obtain a significant improvement. This
figure shows that RVAE performs best for all SNRs and all
metrics. The behavior of the UMX Retrain baseline is quite
different from the DVAE-based methods: It performs better
than DKF and SRNN-SS (but not better than RVAE) at SNR
= —5 dB, but then it decreases below DKF and SRNN-SS as
SNR increases. This is particularly visible for the PESQ score.

Finally, we also report the improvement detailed per noise
type (but averaged over the 3 SNRs) in Fig. 5] We observe
that the algorithms perform quite differently depending on the
noise type. As expected, the “café” noise is the most chal-
lenging one, whereas the “car” noise, being more stationary,
is the easiest to process. Again, RVAE appears to exhibit
the best overall performance. UMX seems appropriate for the
“café” noise, whereas it is outperformed by DKF and SRNN-
SS for the car noise for example (regarding SI-SDR and PESQ
scores).

VI. CONCLUSION

In this paper, we have proposed a general framework for
unsupervised speech enhancement based on Dynamical Vari-
ational AutoEncoders, or DVAEs. In our framework, DVAEs
are used to model the clean speech signal, while the noise is
modeled via non-negative matrix factorisation. While DVAEs
are pre-trained with clean speech, the noise parameters are
estimated at test time, together with the clean speech, from the
noisy speech observations. To achieve that, we have derived a
VEM algorithm for the most general formulation of a DVAE
model, which can then be easily adapted to particular instances
of DVAEs. We have illustrated this principle with DKF, RVAE
and SRNN, and this can be extended to other DVAE models,
e.g. STORN [22] or VRNN [25].

We have compared the performance obtained with those
three example DVAESs, both for speech analysis-resynthesis
and speech enhancement. For speech enhancement, the pro-
posed approach was shown to outperform a supervised base-
line method using the same kind of recurrent networks. The
(non-causal) RVAE provided the best performance among
the tested DVAEs. The SRNN architecture also holds great
potential, provided that it is trained with scheduled sampling
in order to reduce the gap between the training and speech
enhancement conditions. If this gap could be further decreased,
we believe that it could have even better performance than
the non-causal RVAE model. This aspect should be further
investigated, possibly including other autoregressive models
in the DVAE family (e.g. VRNN [25])).

Generally speaking, the inference with DVAEs is non-
causal, meaning that past and future noisy speech observations
are required to enhance a given speech frame. Causal DVAE-
based speech enhancement can also be investigated, but is
out of the scope of this paper. Other future works include

introducing other powerful encoder-decoder networks, e.g. the
temporal convolutional networks (TCN) [39]] and the Trans-
former [63]], in the present unsupervised speech enhancement
framework. The DVAE models may be further boosted with
more expressive latent variables, e.g. introducing hierarchical
multi-scale structure and normalizing flows [64]. We also
plan to extend the proposed DVAE-based speech enhancement
framework to a multi-modal framework, using the speaker’s
lips motion and visual appearance, in the continuation of VAE-
based audio-visual speech enhancement [62].
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