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ABSTRACT

Multiple-speaker tracking is a crucial task for many applications. In
real-world scenarios, exploiting the complementarity between audi-
tory and visual data enables to track people outside the visual field
of view. However, practical methods must be robust to changes
in acoustic conditions, e.g. reverberation. We investigate how to
combine state-of-the-art audio-source localization techniques with
Bayesian multi-person tracking. Our experiments demonstrate that
the performance of the proposed system is not affected by changes
in the acoustic environment.

Index Terms— audio-visual multi-speaker-tracking, direct-path
features, robustness to reverberation.

1. INTRODUCTION

Multi-speaker tracking is a crucial task in many applicative scenarios
such as human-computer/robot interaction, surveillance and moni-
toring systems, etc. The vast majority of methods use vision, and
therefore they suffer from such limitations as visual occlusions, lim-
ited field of view, lighting conditions, etc. Audio processing can help
overcoming these limitations due to the complementary nature of the
information encoded in the acoustic signals. However, in order to
exploit these signals jointly with images, fusion of multi-modal in-
formation is required in order to account for audio and visual data
corruption, proper to multi-person indoor environments, e.g. a robot
interacting with a group of persons holding a conversation.

In this article we address the challenging task of tracking multi-
ple moving speakers with auditory and visual data, with special em-
phasis on accounting for the room acoustics, i.e. audio-visual track-
ing robust to reverberation. The use of two complementary modal-
ities is beneficial when the information is correctly processed and
fused, however the inference algorithms need to be robust to noise
and outliers present in both modalities. Moreover, and in the par-
ticular case of audio and vision, the algorithms have to be carefully
designed to exploit the inherent nature of the two modalities. Indeed,
while the visual observations, e.g. face detection, is almost contin-
uous for speakers looking towards the camera and within the field
of view, natural speech often happens intermittently with occasional
overlaps between several speech signals [1]. Importantly, including
acoustic signals in the overall inference, opens the door to identify
which source emitted which part of the speech signal: that is to sep-
arate and diarize the sources [2]. From the opposite point of view,
it is quite clear that the knowledge of who is where and when in the
scene could help separating the sound sources, for instance by using
beamforming techniques [3].

(a) Meeting room (b) Living room

Fig. 1. Different rooms may have different sound reverberation char-
acteristics. Extracting the direct path of a sound allows learning an
audio-visual mapping that is robust to reverberation.

The literature on multi-person audio-visual tracking is sparse
compared to the vast number of papers dealing with multi-person
visual detection and tracking, e.g. [4, 5, 6, 7]. Methods explicitly
devoted to audio-visual tracking use particle filters or a probabil-
ity hypothesis density (PHD) framework. Generally speaking, one
must be careful when using these methods since the particle gener-
ation procedure may lead to a high computational cost. [8] and [9]
proposed a method using the source direction of arrival (DOA) to
determine the propagation of particles and combined it with a mean-
shift algorithm to reduce the computational complexity. Similarly,
[10] employed the DOA angles of the audio sources to reshape the
typical Gaussian noise distribution for particle propagation and to
weight the observation model afterwards. The methods presented
above are based on audio-guided visual-particle generation, and the
goal of audio-visual combination is mostly to increase the sampling
efficiency, with the requirement that audio and visual data must be
simultaneously available. Alternatively, [11] used a Markov chain
Monte Carlo particle filter (MCMC-PF) to increase sampling effi-
ciency. Still in a particle filter tracking framework, [12] proposed
to use the maximum global coherence field of the audio signal and
image color-histogram matching to adapt the reliability of audio and
visual information. Finally, [13] used visual tracking information to
assist source separation and beamforming.

All methods presented above are within a sampling framework,
in which the trade-off between tracking quality and computational
cost is usually one of the critical points. In addition, they were
specifically designed to track a fixed number of people, and there-
fore the state space has fixed dimensionality. Moreover, these
methods are evaluated in meeting-room like scenarios, meaning that



several visual and auditory sensors are used at different positions in
the room. Little is known on the performance of these methods in
ego-centric conditions, that is when all sensors are confined within
a small volume (e.g. the head of a robot). The methods for audio-
visual multi-speaker tracking designed for robot applications are
rather rare. [14] exploit the framework of particle filtering for audio-
visual localization of a single speaker with a robotic platform. Very
recently, we have proposed a probabilistic framework for audio-
visual multi-speaker tracking on a robotic platform [15]. For the
sake of reducing the computational complexity the auditory features
used in the previous work were straightforward binaural features,
which are highly sensitive to the reverberation and other acoustic
conditions, as we will demonstrate in the experimental section.

In this paper we propose to incorporate robustness to room
acoustics into the audio-visual multi-speaker tracking method
of [15]. More precisely, we propose to develop a tracking algo-
rithm that is robust to speech reverberation in such a way that there
is no need for retraining whenever the algorithm is tested in a room
that is different than the room used for training. Indeed, the audio
localization algorithm used in [15] is highly sensitive to changes
in the acoustic conditions, typical of robotic scenarios in the wild.
Therefore, we investigate how the recently proposed direct-path re-
lated transfer function (DP-RTF) [16, 17] features could be exploited
within a Bayesian multi-speaker tracking method, as illustrated in
Fig 1. Even if the general framework can process any visual lo-
calization features, we aim at evaluating the robustness of auditory
features. For the sake of a fair comparison with previous works, we
will only modify the auditory features and, consequently, the audio
observation model, and leave the rest of the model (visual features
and probabilistic dynamic model) intact.

The rest of the paper is organized as follows. The next section
is devoted to describe the DP-RTF features. Section 3 depicts the
audio-visual multi-speaker framework and the new auditory proba-
bilistic observation model. Results on a publicly available dataset
are discussed in Section 4.

2. ACOUSTIC FEATURES

We first describe the acoustic features in the case of one speaker for
the sake of clarity. The multi-speaker case is discussed afterward.

Single speaker Given the speech signal s(l), the recorded signals
at the microphone array are:

u(l) = s(l) ? a(l), v(l) = s(l) ? b(l), (1)

where ? denotes convolution and the room impulse responses a(l)
and b(l) encode the propagation path of the sound wave from the
source point to the microphones, which is composed of the direct-
path and the reflections. The direct-path propagation encodes the
relative location of the source with respect to the microphone array.
Our goal is to extract the direct-path from the microphone signals,
which are distorted by the reflections and by ambient noise. In the
short-time Fourier transform (STFT) domain, we have:

up,k = sp,k ? ap,k, vp,k = sp,k ? bp,k, (2)

where p and k are the indices of temporal frames and frequency
bins, up,k, vp,k and sp,k are the STFT of u(l), v(l) and s(l) re-
spectively, ap,k and bp,k with p = 0, · · · , Q − 1 represent the con-
volutive transfer function (CTF) corresponding to the room impulse

responses [18, 19]. The first CTF coefficient a0,k can be interpreted
as the k-th coefficient of the Fourier transform of the impulse re-
sponse segment a(l)|L−1

l=0 , where L is the STFT frame length. If L is
small, this segment includes only the direct-path impulse response,
and thus the DP-RTF is defined as b0,k

a0,k
.

We notice that: up,k ? bp,k = sp,k ? ap,k ? bp,k = vp,k ? ap,k.
Dividing both sides by a0,k and reorganizing the terms in vector
form, (2) rewrites:

vp,k = x>p,k yk, (3)

where xp,k = [up,k, . . . , up−Q+1,k, vp−1,k, . . . , vp−Q+1,k]
>,

yk =

[
b0,k
a0,k

, . . . ,
bQ−1,k

a0,k
,−a1,k

a0,k
, . . . ,−aQ−1,k

a0,k

]>
.

We see that the DP-RTF appears as the first entry of the reverberation
model yk ∈ C(2Q−1)×1. This equation is defined for one frame, i.e.
the p-th frame. To estimate the vector yk, we collect O > 2Q − 1
frames and solve a least square problem. In addition, an inter-frame
spectral subtraction method is proposed in [16, 20] to remove the
possible additive noise.

Multiple speakers The single speaker case is relatively easy since
all the frames are associated to a time invariant yk. In [17], neigh-
bor frames are assumed to be associated to the same speaker, and
therefore to the same yk. This assumption relies on the well-known
sparsity of speech signals in the STFT domain. In practice, we pro-
pose to estimate the DP-RTF of the current frame by stacking only
the previous O ≈ 3.5Q values. This is a good trade-off between a
robust DP-RTF estimation and assuming that vector yk is constant
over time. At time t, the audio observations, denoted by gtk corre-
spond to the current estimate of the DP-RTF features, which is the
first entry of yk: gtk = ŷk|1t , where ŷ is an estimate of y. We
assume that for each time t at frequency k, the gtk is associated to
the position of only one speaker in the scene, which is well observed
in practice.

When several microphone pairs are available, we can compute
the DP-RTF for each microphone pair and then consider all these
data as audio observations. Importantly, the relation between dif-
ferent frequency bins of different microphone pairs depends on the
relative position of the speakers with respect to each other and to the
microphones. Therefore we cannot guarantee that the audio feature
at the k-th frequency bin corresponds to the same speaker location
for all microphone pairs. Therefore, the features of different micro-
phone pairs must be considered as independent observations. Virtu-
ally, if we exploit three microphone pairs, we will have 3K audio
observations, where K denotes the number of considered frequen-
cies. We are now left with the following challenging problems: (i)
how to represent the audio and visual observations in a joint space,
(ii) how to automatically assign the different observations to each of
the speakers, and (iii) how to fuse them so as to infer the speakers’
position.

3. MULTI-SPEAKER AUDIO-VISUAL TRACKING

We are inspired from the multi-speaker tracking framework pre-
sented in [15], and in order to be able to evaluate the effect of the
DP-RTF features for tracking purposes, we keep the same visual



Fig. 2. (a) Robotic head with 6 microphones (red numbers); (b)
Experimental simulation of limited field-of-view.

pipeline. The main goal is to infer the positions of the speakers,
that we encode in a hidden state stn for speaker n at time t, and st
denotes the concatenation of these states. In addition to speaker n’s
position, stn includes the velocity and the person’s head bounding-
box size. Each of the visual and audio features must be assigned to
each of the speakers, we denote by zt the set of hidden assignment
variables. It consists of 3 assignment variables: zt = (at, bt, ct)
(that we detail below). Formally, the tracking problem can be
expressed as a maximum likelihood problem:

maxst,zt

p(st,zt|o1:t), (4)

where o1:t = (o1, . . . , ot) represents all observations up to time t.
ot contains both audio observation gt and visual observation f t. In
order to define the probabilistic model, we need to specify the state
dynamics, the visual observation model and the audio model.

State dynamics We assume the speakers’ dynamics are first or-
der Markovian following a Gaussian distribution: p(stn|st−1,n) =
N (stn;Dst−1,n,Λn) with transition and uncertainty matrices D
and Λn respectively.

Visual observation model For the sake of comparison, we use the
very same face detector as in [15]. Each visual observation at time
t, f tm, consists of the geometric vtm and appearance htm descrip-
tors. An assignment variable Atm is defined for each of these ob-
servations. If assigned to a speaker 1 ≤ Atm ≤ N , where N is the
maximum number of people may appear in the scenario, these de-
scriptors follow a Gaussian and a Bhattacharya distribution respec-
tively. Otherwise, i.e. Atm = 0, the descriptor belongs to a virtual
speaker with uniform distribution U(·). Formally we write:

p(f tm|st, Atm = n) = (5){
N (vtm; stn,Φ)B(htm;hn) if 1 ≤ n ≤ N

U({v,h}tm; vol(V,H)) if n = 0,

where Φ is the covariance matrix and hn is the appearance model of
the n-th speaker.

Audio observation model In order to fuse the audio and visual in-
formation, we must operate in a common representation space. We
opt to exploit a probabilistic generative model to project the audio
features into the visual image plane in a non-linear and principled
manner. With the help of a dataset of pairs of image-positions and
DP-RTF features, we split the image in R regions within which the

Fig. 3. Visualisation of the marginal GMM (R = 32) components in
the image space after training. (a) Audio GMM distribution density.
(b) Visualisation of location of different components.

visual-audio mapping is approximately linear, and learn these lin-
ear transformations. Thus, on top of the observation-to-speaker au-
dio assignment variable, that we denote by Btk, we also need an
observation-to-region assignment variable Ctk. Similarly to the vi-
sual case, when assigned to a speaker (i.e. 1 ≤ Btk ≤ N ) and to
a region (i.e. 1 ≤ Ctk ≤ R) the observations follow a Gaussian
distribution. If assigned to the virtual speaker, they follow a uniform
distribution. Synthetically:

p(gtk|st, Btk = n,Ctk = r) = (6){
N (gtk;Lkrstn + lkr,Σkr) if 1 ≤ n ≤ N

U(gtk; vol(G)) if n = 0.

The parameters Lkr , lkr and Σkr are learned during training.

Variational inference With the proposed probabilistic formula-
tion, the inference problem in (4) cannot be exactly solved without
exponentially complex algorithms. Therefore we propose a factor-
ization of the filtering distribution:

p(zt, st|o1:t) ≈ q(zt)

N∏
n=0

q(stn) (7)

and solve for the associated variational EM algorithm, see [15]. All
the steps of the EM are closed-form.

4. EXPERIMENTS
Settings We use the AVDIAR dataset [21] to evaluate the perfor-
mance of the algorithm. The dataset consists of several videos of
natural indoor conversations, where people freely move and chat.
We test on 2 representative sequences: a 1-person (1P) sequence and
a 2-person (2P) sequence. Both sequences contain speakers enter
and leave the field of view. The dataset is recorded with an ego-
centric system, consisting of a dummy head equipped with a stereo
camera and 3 pairs of microphones, see Fig 2 (a). The camera has
field of view of 97◦ × 80◦ (horizontal × vertical), with an image
resolution of 1920 × 1200 pixels at 25 fps. To simulate a natural
scenario with people going out of the field of view, we consider that
the images have two “blind” areas, in which only audio information
is available, see Fig 2 (b). This is only done for convenience, so
that the audio-visual mapping can be learned with the entire image.
In this way we can consider the errors due to the audio-visual cali-
bration negligible with respect to the noise present in the raw data.
Regarding the DP-RTF features, they are extracted from three mi-
crophone pairs (1-2, 3-4, 5-6), using Q = 10 and a STFT window
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Fig. 4. Examples of results on the AVDIAR dataset: (a) 1P, frame
#609. (b, c, d) 2P, frame #137, #507, #1113. Red numbers indicate
estimated speakers’ position and corresponding identity.

of 16 ms with 50% overlap (16-kHz audio sampling). K is set to 64
which represents 4 kHz. The number of regions R in audio observa-
tion model is set to 32. We compared the result with particle filtering
based method in [10] and with our previous work in [15].

Training As described in Section 3, we use a Gaussian mixture re-
gression model to generate audio observations. The model’s param-
eters, {Lkr, lkr,Σkr} need to be learned for all k ∈ {1, . . . ,K},
r ∈ {1, . . . , R}. They are estimated via an EM procedure using a
training dataset {g, s} [15] on the following grounds. 1 s-long white
noise signals (to ensure energy in all frequency bins) are emitted by a
loudspeaker from 800 different known positions covering the camera
field of view. The number of Gaussian components is set to R = 32.
The distribution of the marginal Gaussian mixture model in source
location st obtained via training is illustrated in Figure 3. This figure
shows that the field of view is well covered by the Gaussian compo-
nents of our model. We indistinctively refer to this procedure as
either training or audio-visual calibration.

Evaluation Metrics We evaluate the performance of the pro-
posed method using standard MOT (multi-object tracking) met-
rics [22]: MOT accuracy (MOTA), which combines false positives
(FP), missed targets = false negative (FN), and identity switches
(ID); the false alarm per frame (FAF); the tracking recall (Rcll) and
tracking precision (Prcn). Since audio localisation has unlimited
field of view, but is less accurate than visual tracking, we evaluate
only the azimuth in the “blind area”. MOTA is calculated with an
overlap threshold of 0.9.

Results Table 1 reports the results on the two sequences for the
three methods. Firstly, we observe that the results for 1P are bet-
ter than for 2P, which is expected since 2P is more complex. Also,
we notice that the proposed method outperforms the two baseline
methods in both sequences. The difference is obvious in the more
complex 2P sequence.

Qualitative results are illustrated in Fig 4. We can observe that
the tracking results are always around the speakers, even if Fig 4 (b)
and (c) are considered as failure cases for quantitative evaluation,

Table 1. Results on the AVDIAR dataset.
Seq. Method Rcll(↑) Prcn(↑) FAF(↓) FP(↓) FN(↓) IDs(↓) MOTA(↑)

1P
[10] 68.6 70.1 0.27 191 205 0 39.3
[15] 76.4 86.9 0.11 75 154 8 63.7
Prop. 75.5 89.6 0.08 57 160 0 66.7

2P
[10] 56.7 57.1 0.85 1451 1471 92 11.4
[15] 51.3 63.7 0.59 995 1655 1 22.0
Prop. 70.5 85.1 0.25 420 1002 2 58.1

Total
[10] 58.6 59.1 0.68 1642 1676 92 15.8
[15] 55.4 67.7 0.45 1070 1809 9 28.7
Prop. 71.3 85.8 0.20 477 1162 2 59.5

Table 2. Results with training in a different room.
Seq. Method Rcll(↑) Prcn(↑) FAR(↓) FP(↓) FN(↓) IDs(↓) MOTA(↑)

1P [15] 61.3 69.8 0.25 173 252 2 34.5
Prop. 74.2 88.2 0.09 65 168 0 64.3

2P [15] 44.9 56.5 0.69 1173 1874 1 10.4
Prop. 70.2 85.2 0.24 413 1014 2 58.0

Total [15] 48.0 59.2 0.56 1341 2108 5 14.8
Prop. 70.8 85.7 0.20 478 1182 2 59.0

since the overlap between the track and the face ground truth is zero.1

To further evaluate the robustness of the proposed approach, we
trained the audio observation model in a different room than the
test room. Results are reported in Table 2. We can clearly see that
training in a different room has a very negative effect when the au-
dio features are not robust to the acoustic conditions, i.e. [15]. In
contrast, by properly exploiting the DP-RTF features and including
them in the tracking framework in a principled manner with a proba-
bilistic observation model, the proposed system is almost unaffected
by the changes in the acoustic environment. In short, we propose
an audio-visual multi-speaker tracking system that does not require
room-specific data to provide highly accurate results.

5. CONCLUSION

We proposed an AV multi-speaker tracking algorithm based on a
variational EM algorithm with very reasonable computation cost.
The use of DP-RTF audio features makes this system robust to
changes in the acoustic conditions, as illustrated by comparison with
the use of conventional audio features and another state-of-the-art
AV multi-person tracking algorithm.
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