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Abstract

With the increasing presence of robots in our every-day environments, improving their social skills is of utmost impor-
tance. Nonetheless, social robotics still faces many challenges. One bottleneck is that robotic behaviors need to be
often adapted as social norms depend strongly on the environment. For example, a robot should navigate more carefully
around patients in a hospital compared to workers in an office. In this work, we investigate meta-reinforcement learning
(meta-RL) as a potential solution. Here, robot behaviors are learned via reinforcement learning where a reward function
needs to be chosen so that the robot learns an appropriate behavior for a given environment. We propose to use a vari-
ational meta-RL procedure that quickly adapts the robots’ behavior to new reward functions. As a result, given a new
environment different reward functions can be quickly evaluated and an appropriate one selected. The procedure learns
a vectorized representation for reward functions and a meta-policy that can be conditioned on such a representation.
Given observations from a new reward function, the procedure identifies its representation and conditions the meta-
policy to it. While investigating the procedures’ capabilities, we realized that it suffers from posterior collapse where
only a subset of the dimensions in the representation encode useful information resulting in a reduced performance. Our
second contribution, a radial basis function (RBF) layer, partially mitigates this negative effect. The RBF layer lifts the
representation to a higher dimensional space, which is more easily exploitable for the meta-policy. We demonstrate the
interest of the RBF layer and the usage of meta-RL for social robotics on four robotic simulation tasks.
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1. Introduction

Since the emergence of social robotics [1], substan-
tial efforts have been invested in developing algorithms
to allow the deployment of interactive robots in every-day
environments such as malls, train stations or hospitals.
Given the complex dynamics of social environments, the
approach of manually designing behaviors, for example by
using state machines, is often not feasible. As an alterna-
tive, reinforcement learning (RL) [2] has been introduced,
allowing to autonomously train social behaviors for com-
plex environments. However, classical RL introduces its
own set of problems when applied to robotics [3]: (i) RL
requires large amounts of training data, meaning hours
and hours of observations that have to be collected with
the robot, and (ii) how to define the goal of learning, i.e.
the reward function, is far from being trivial and properly
addressed. In RL the reward function defines which states
a robot should try to reach or avoid. It is often a weighted
sum over several reward components: R(s) =

∑
i wiri(s).

For example, for social navigation [4], [5] besides other
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components, the reward function might include a positive
reward component for reaching the robot’s goal position
or a negative reward component to avoid getting to close
to people.

How to define these components and to set their weights
so that the robot learns the intended behavior is not obvi-
ous. Having a too strong negative reward for being close
to people might result in taking large unnecessary detours.
Whereas giving a too strong weight on the goal position
might result in disregarding the personal space of people
and even colliding with them. Finding the correct weights
and components that result in the intended behavior of-
ten requires an iterative process where several variations
of the reward function have to be tested. Moreover, with
classical RL the behavior that results for each reward func-
tion variation has to be learned from scratch needing many
observations.

Both problems make the application of RL especially
problematic for social robotics. Socially appropriate be-
haviors are strongly context-depended. They usually have
to be adapted to different environments. For example, a
social robot might be used to navigate in a care center for
elderly or an office. In the care center the robot should
avoid getting too close to people to avoid that they feel
unsafe. Whereas, in an office environment this restriction
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Figure 1: Graphic visualization of the posterior collapse of
PEARL. (left-top) The ground truth task representation, where
each task corresponds to a coloured dot. The three primary col-
ors correspond to the strength of each of three reward component
weights. (left-bottom) PEARL’s learned task representation uses
only one dimension (z1) and exhibits posterior collapse in the two
other dimensions (z2 and z3). (right) As a result, PEARL’s learning
performance compared to a task conditioned policy using the ground
truth (Oracle) is reduced. The proposed RBF-PEARL aims to close
this gap by mitigating the negative impact of posterior collapse dur-
ing training.

might be less important and the robot could move closer
around people to reach its goal position faster. Being able
to adapt a robot behavior quickly to the specific needs
of a certain new environment is essential for the practical
application of social robotics.

We propose the use of meta [6] and transfer RL [7, 8]
to overcome the issues of RL for social robotics. These
paradigms aim to adapt the learning process to a certain
problem domain to be more efficient on a new target task
of this domain, or by reusing knowledge from solved tasks
to improve the performance of learning a new target task.
Of particular interest for us are methods that are able to
adapt to a new target task using only few observations.
In our case, tasks are represented by reward functions,
i.e. different definitions of their components and compo-
nent weights. Meta-RL allows to test efficiently several
reward functions given a new environment, e.g. a care
center or office space, to find the function that results in
the most appropriate behavior for the new environment.
One class of meta-RL methods able to adapt to new tasks
using only few observations are task conditioned policies.
These methods learn a behavior, i.e. a policy, that is condi-
tioned on a latent vector representation z of a task. How
to represent tasks and solve them is learned on a set of
source tasks. Given a new target task, a small amount of
observations are collected to compute its task representa-
tion and to condition the policy to it.

A promising research direction for task conditioned po-
lices are variational architectures [9], such as PEARL [10].
Instead of learning a deterministic representation of tasks,
PEARL learns to represent them via a distribution, ex-
ploiting the flexibility of probabilistic models and the rep-
resentation power of deep neural networks. We investi-
gated the usability of such variational meta-RL frame-
works for social robotic tasks, and realized that the learned

encoder suffers from posterior collapse resulting in a re-
duced learning performance (Fig. 1). We propose to use
a radial basis function (RBF) layer [11] to transform the
task representation before giving it to the downstream task
conditioned policy, thus constructing an embedding that
is more suitable to represent tasks. RBF networks are uni-
versal function approximators [12] whose parameters can
be learned, and exhibit interesting results in classification
tasks [13, 14, 15] as well as in value-learning for continuous
action DRL [16].

In summary, our contribution is two-fold:

1. Successfully demonstrate the usage of meta-RL on
three robotics tasks and four different settings by
quickly adapting to various reward functions.

2. Improving the existing PEARL algorithm by intro-
ducing a RBF layer that transforms the task repre-
sentation allowing a better training of the task de-
pendent behavior.

In the following, we first discuss work related to our
topic and methods, then introduce our methodology, to
finally present the experimental protocol and associated
findings.

2. Related work

2.1. Social Robotics

In the recent past, several studies investigating the use
of reinforcement learning for social robotics [17, 18]. One
crucial factor for the success of reinforcement learning is
the design of reward functions [3], as they shape the opti-
mal robot behavior. Badly designed reward functions can
lead to catastrophic consequences, where the robot learns
either undesired or even dangerous actions [19]. This is
even more challenging when using reinforcement learning
in real-world systems, as in social robotics.

To partially address this challenge, several approaches
have been proposed for designing safe and efficient reward
functions for social robotics. A prominent line of research
in this direction is to obtain rewards directly from a hu-
man instructor, i.e. teaching the robot [20, 21, 22, 23, 24].
By definition, these approaches require either an explicit
or implicit feedback from a human during the whole train-
ing process. While this might be suitable for simple tasks
requiring few examples to properly learn the task, it is
not well suited for learning problems requiring hundreds
(or more) samples for learning. A different line of re-
search consists on using task-driven rewards [25, 26, 27]. In
this paradigm, the robot receives a reward after finishing
the task, and the reward corresponds to how efficiently
the agent performed the task. While this alleviates the
constraint of constant human supervision, it implies that
the robot receives very sparse rewards, thus effectively in-
creasing the number of samples needed for learning, and
yielding an overall more difficult learning problem. At the
cross-roads of these two lines, hybrid approaches have been

2



proposed [28], where the authors define a reward which
they use to train their robots and then fine tune the re-
ward function according to the feedback of the users so as
to learn better policies.

The use of RL in social robotics is therefore challeng-
ing because (i) it is unclear how to design appropriate re-
ward functions, and (ii) increasing the sample efficiency in
real-world applications is of utmost importance. In this
paper we propose to explore the use of meta-RL for social
robotics. Rather than learning one behavior corresponding
to one reward function, we would like to learn several be-
haviors corresponding to different combinations or reward
function components.

2.2. Deep Meta-Reinforcement-Learning

Deep meta-RL procedures have the goal of improving
the learning speed on a new target task by using expe-
rience from a set of similar meta-training tasks. Several
approaches exist. One prominent direction has the goal
of ”learning to learn”. The idea is to model the learning
process directly with a recurrent or recursive deep net-
work that is trained to solve certain types of task quickly
[29, 30, 31, 32]. Another prominent direction is to learn
good initialization parameters for a deep network model
that allows it to be faster trained on a target task [33,
34, 35, 36]. Both approaches improve the learning per-
formance, but they still use gradient-based, deep network
training for the learning procedure on a target task. As a
consequence, they still require many observation and train-
ing iterations to learn a target task.

A third direction overcomes the need for gradient-based
training. The procedures learn a general deep network
model that solves similar tasks. Given a target task the
model is conditioning to it with a description of the task
by giving it as a vector input to the model. One such algo-
rithm is PEARL [37, 10]. It utilizes a variational inference
method to learn how to represent tasks and to identify a
good task representation based on some task observations.
PEARL showed that it needs up to 100× less observations
to learn a target tasks compared to gradient-based meth-
ods. This motivates our choice of PEARL as our base
approach for meta-RL in social robotics.

2.3. Posterior Collapse

As for any variational method, PEARL can suffer from
posterior collapse, meaning that at least one of the la-
tent bottleneck dimensions become not informative during
training. This behavior can be easily identified by looking
at the per-dimension Kullback-Leibler divergence between
the posterior and prior distributions. Once a dimension
collapses, it is not needed to ensure good reconstruction.
Several factors can cause posterior collapse, e.g., a local op-
tima [38], the objective function itself [39, 40, 41, 42], a too
unconstrained variance [43] or the fact that the posterior
approximation lags behind the true posterior model [44].
In the case of PEARL, having collapsed dimensions trans-
lates into a reduction of the task identification power of

the method. To mitigate the negative impact of posterior
collapse, we propose to lift up the representation power of
the latent representation by using a radial basis function
layer. In our experiments, this proves more beneficial than
increasing the network capacity of PEARL.

3. Approach

3.1. Preliminaries

Reinforcement Learning. Tasks in RL are formalized as
Markov decision processes (MDPs). An MDP is a tu-
ple (S,A,P,R) with state space S and action space A.
The agent transitions from a state st ∈ S by action at ∈
A to state st+1 at time step t. The transition proba-
bility density function P(st+1|st, at) defines the environ-
ment dynamics giving the probabilities for transitions. For
each transition the agent receives a reward defined by the
reward function: rt = R(st, at, st+1) ∈ R. The prob-
ability transition function and reward function are un-
known to the agent. The goal of the agent is to maxi-
mize the expected future return for each time step t: Gt =
E
[∑∞

k=0 γ
kR(st+k, at+k, st+1+k)

]
where the discount fac-

tor γ ∈ [0, 1) defines the importance of short-term rewards
relative to the long-term ones. RL agents maximize the re-
turn by learning a policy π(a|s) = Pr(At = a|St = s) that
defines the probability of the agent to take action a ∈ A
in state s ∈ S.

In the case of robotics tasks, the state is, for example,
represented by the input from the robots visual (cameras)
and audio (microphones) sensors. Actions are the motor
commands send to its actuators. Taking an action will
have an impact on the environment and will create some
stochastic change in it. The goal of the task is given by
the reward function, e.g. the robot is rewarded if it reaches
a certain goal position.

Variational Meta-RL (PEARL). In this work, we would
like an agent to adapt quickly to a new reward function
using only a few observations. We formalize this prob-
lem as a meta-RL problem. Each reward function rep-
resents a task τ ∈ T with τ = {R(st, at, st+1)}. We
assume a distribution ρ(τ) over the task. We differen-
tiate two meta-learning phases: 1) meta-training and 2)
meta-testing. During meta-training, a number of training
tasks is sampled according to ρ(τ). Based on these train-
ing tasks, a task conditioned policy π(a|s, τ) is learned.
During meta-testing, a different set of test tasks is sam-
pled from ρ(τ) and the adaptation of the learned policy to
these tasks is measured.

We chose PEARL [10] as our meta-RL algorithm. PEARL
learns a task-conditioned policy π(a|s, zτ ) where zτ ∈ Z =
Rd is a low-dimensional task representation. The task rep-
resentation zτ conditions the policy towards maximizing
the return of the reward function for task τ . The repre-
sentation zτ = f(cτ ) is computed based on observed tran-
sitions from a task, called the context cτ = {cτn}, where
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Figure 2: PEARL-RBF Architecture. The proposed meta-RL procedure learns to adapt to unseen test reward functions. The context
encoder uses data from the replay buffer to infer the posterior over the latent context variable z. The latent context sampled from the
posterior z = (z1, . . . zd) is then fed to the RBF network, which uplifts every input dimension m to a different k-dimensional representation:
zm → (z̃m,1, . . . , z̃m,k). The resulting task representation z̃ is used to condition the actor and critic network.

cτn = (sn, an, rn, s
′
n). PEARL uses a variational method,

similar to variational autoencoders (VAEs) [9], to estimate
the posterior distribution of the low-dimensionsal repre-
sentation given the context p(z|c). It approximates the
posterior with an inference network qφ(z|c) parametrized
by φ. The network is trained on a log-likelihood objective
resulting in the following variational lower bound:

Eτ
[
Ez∼qφ(z|cτ ) [R(τ, z) + βDKL(qφ(z|cτ ))‖p(z))]

]
(1)

where R(τ, z) is the return for task τ using the policy
conditioned on z and p(z) is a standard Gaussian prior
over z. The inference network is a product of independent
Gaussian factors for each transition in cτ :

qφ(z|cτ ) ∝
N∏
n=1

N
(
fµφ (cτn), fσφ (cτn)

)
(2)

where fµφ and fσφ are represented by a neural network.
During meta-training, the policy π(a|s, z) is learned

using the soft actor-critic (SAC) [45] algorithm. SAC is
off-policy, consisting of an actor πθπ (a|s, z) and a critic
QθQ(s, a, z) network. PEARL jointly trains the inference,
actor and critic networks using the reparameterization trick
similar to VAEs [9]. During a meta-training step, the
training procedure has two phases: 1) data collection and
2) network parameters update. In the data collection step,
a replay buffer Bτ is filled with the transitions from K tra-
jectories for each training task τ . Then, for each trajec-
tory PEARL samples a task representation z ∼ qφ(z|cτ )
to condition the policy where cτ is sampled from the re-
play buffer Bτ . During the second phase, the procedure
updates the network parameters for each training task τ .
It first samples a batch of context cτ from recently sam-
pled transitions in the replay buffer Bτ . Then, the task
representation z ∼ qφ(z|cτ ) is sampled from the posterior

distribution of z given the context cτ . The critic and ac-
tor networks are updated using the task representation and
independently sampled transitions from the whole replay
buffer. The loss of the critic is given by:

Lcritic = E(s,a,r,s′)∼B
z∼qφ(z|c)

[
Qθ(s, a, z)− (r + V̇ (s′, ż))

]2
(3)

where V̇ is the value, i.e. the maximum Q-value, of a tar-
get network, and ż indicates that gradients are not being
computed through it. A target network is necessary here
because directly implementing Q learning with neural net-
works proved to be unstable in many environments [46].
The actor loss is given by:

Lact = Es∼B,a∼πθ
z∼qφ(z|c)

[log(πθ(a|s, ż)− (Qθ(s, a, ż))] (4)

The loss of the inference network for the task representa-
tion is composed of the critic loss and the Kullback–Leibler
divergence term from (1):

Lφ = E(s,a,r,s′)∼B
z∼qφ(z|c)

[Lcritic + βDKL(qφ(z|cτ ))‖p(z))] . (5)

For meta-testing, a test task τ is first explored for a
few hundred time steps. The policy πe(a|s, ze) used for ex-
ploration is conditioned on a task representation sampled
from the Gaussian prior ze ∼ p(z). After the exploration
phase, the context cτ collected with πe is used to compute
the final task representation given by the sample mean of
the posterior mean: zτ = 1

N

∑N
n=1 f

µ
φ (cτn). More details

on the meta-testing phase are provided in the experimental
section.

3.2. RBF for Variational Meta-RL

We noticed that in several scenarios PEARL suffers
from posterior collapse (of the learned task representation
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z). As a result, not all dimensions of z are used. The
task information is compressed in few dimensions making
it difficult for the downstream policy and critic network to
learn from z. To compensate for this, we propose to trans-
form the task representation z̃ = ϕ(z) to a representation
that is easier to process for downstream networks. Inspired
by [15, 16], we propose the usage of radial basis function
(RBF) layers to transform the task representation.

We construct the RBF layer based on the idea of RBF
networks [11] which are universal function approximators
[12]. RBF networks consist of a layer of hidden neurons
that have a Gaussian activation function. The output of
the networks is a weighted sum over the Gaussian acti-
vations. In a similar manner, our proposed RBF layer
consist of a layer of neurons. For each input dimension
zj ∈ R from the original task representation exist N RBF
neurons: z̃j,1, . . . , z̃j,N . Each neuron represents a radial
basis function having a Gaussian shape:

z̃i,j = exp
(
−δi,j ||zi − ci,j ||2

)
, (6)

where δi,j ∈ R is a scaling factor and ci,j ∈ R is the center,
i.e. the point of the highest activation. δ and c are the
parameters of the RBF layer which can be either fixed or
trained using gradient descent based on the loss function
of downstream networks.

In summary, we propose to transform the task repre-
sentation using a RBF layer: z̃ = ϕ(z). The resulting
representation is then given to the task conditioned actor
πθ(a|s, z̃) and critic Q(s, a, z̃) network.

4. Experimental Results

We propose to test our approach on three different en-
vironments inspired from social interaction situations. In
the first environment, the agent, represented by a robotic
head, needs to learn how to control its position following
different criteria (e.g. maximizing the number of people
in the field of view or facing the speaker). In the second
environment, the agent must learn to navigate safely and
in a socially-compliant manner through a crowd of people.
The third one is a continuous control environment focused
around robotic locomotion. The purpose of these three
environments is twofold. First we want to show the effec-
tiveness of our proposed methodology to generate different
behaviors in human robot interaction tasks. Secondly, we
assess whether or not the use of RBF layers is beneficial for
variational meta-RL in terms of training and adaptation
efficiency.

4.1. Evaluation protocol

Baseline. The most natural baseline to the proposed RBF-
PEARL is standard PEARL. However, directly comparing
with PEARL seems unfair, since adding RBF layers in-
creases the number of parameters of the actor and critic
networks. We therefore adjust the number of parameters
of the actor and critic networks of the PEARL baseline

so as to match the number of parameters of the RBF-
PEARL. Beyond this adjustment, both methods use sep-
arated actor and critic networks, and both networks con-
sist in a 3-layers MLPs with 300 neurons per layer. Both
methods use a 3-layer MLP with 200 neurons per layer as
encoder. In more details, if the latent dimension is d, and
we use one RBF layer with k neurons, the first layer of
the actor/critic networks would have 300d and 300kd pa-
rameters for PEARL and RBF-PEARL respectively. For
the sake of a fair comparison, we add an extra layer at the
beginning of PEARL’s actor/critic network with kd out-
put neurons, thus yielding the number of parameters of
PEARL and RBF-PEARL actor and critic networks com-
parable. Unless otherwise stated, we use k = 9.
As a separate baseline, we used a modified version of the
soft actor critic algorithm. We trained one agent per
tasks, using only 200 observations. However we strongly
increased the numbers of gradient step performed per ob-
servations in order to force the network to learn a behavior
with only this 200 observations. We used this baseline to
compare the performances classical RL algorithms (here
SAC) trained on 200 observation can reach with respect
to RBF-PEARL and PEARL with 200 adaption steps. We
except the performances of these agents trained with soft
actor critic algorithm to be lower than the performances
of PEARL and RBF-PEARL.

Evaluation protocol. For meta-training, we sample 100 tasks
for the three environments. Evaluation is performed on
20 meta-testing tasks that are different from those used at
meta-training time. To evaluate on each meta-testing task
τ , we collect 200 time steps with a task representation ze
sampled from the standard Gaussian prior. Then we ag-
gregate this 200 time steps to compute a task representa-
tion zτ sampled from the posterior estimation given by the
encoder. To compute the final test-time performance, we
record the performance of the policy associated to the task
representation zτ for one episode. We repeat the training
process 5 times, and report the mean performance and the
associated standard error.

4.2. Gaze control environment

Environment description. We inspire from recent research
in RL for social robotics [18] to design this environment,
where we aim to learn a gaze control strategy for a robotic
head. In our setup, the robot observations are multimodal
consisting of visual, auditory, and proprioception cues. To
this end, we assume normalized scene coordinates of size
2×1. Regarding the visual observations, we assume a reg-
ular head camera that extracts pose cues from the 0.4×0.3
field of view (FoV). In more detail, we assume that a multi-
person pose estimation method is available, and provides
one heatmap for each of the J = 18 landmarks (e.g. nose,
neck, left shoulder, right hip). The heatmap associated
to each landmark indicates the probability of the presence
of that landmark at every position. Since state-of-the art
pose estimators provide these heatmaps in low resolution,
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Figure 3: Illustration of the gaze control environment. The
field of view is shown in red, the active speaker in purple, and the
visible/non-visible landmarks are shown in white/color respectively.

the visual observations will consist on J 7 × 7 heatmaps.
Regarding the auditory observations, we emulate the out-
put of a sound source localization algorithm. Given the
precision of current sound source localization methods,
it seems reasonable to represent the auditory input as a
14 × 8 heatmap corresponding to the entire scene. Each
of its cells corresponds to the probability of having an ac-
tive speaker in this direction. Importantly, while the visual
features correspond to the current field of view of the cam-
era, the auditory features correspond to the entire scene,
since audio localization is not limited by the camera’s FoV.
Lastly, the proprioception cues consist of the coordinates
of the robots current field of view center. It is encoded us-
ing a R2 vector representing both the pan and tilt angles
of the robotic head, defining to which part of the scene
corresponds the visual input. An observation of the gaze
control environment is shown in Figure 3 (left).

Regarding the action space of the agent A, we set it to
[−1, 1]2,corresponding to the pan and tilt angular veloci-
ties respectively. We choose to normalize the action space
so as to stabilize the network learning. The maximum pan
and tilt velocities correspond to shifting the camera field
of view by 0.16 and 0.11 in normalized scene coordinates
at every time step respectively.

Reward components. We define three reward components
that will be combined to generate various tasks (i.e. re-
ward functions). We will focus on the number of people
in the field of view, the presence of a speaker in the field
of view, and reducing spurious robot movements. These
three components are very generic, and relevant for any
social robot. The dimension of the latent space of both
PEARL and RBF-PEARL is set to d = 3.

We want to reward the robot for having people in the
field of view of the camera, since this means the robot
would be looking at people. Naively reward the number
of people within the field of view leads to an action policy
that explores until finding a person, and then follows the
person. A more natural behavior is to check on previously

detected people. We therefore propose to use a visual re-
ward component that depends on the last time the agent
saw a person. More precisely:

Rvis =
∑
p∈Pvis

2− exp(−tp) (7)

where Pvis is the set of people whose face is in the visual
field of view and tp ∈ [0,∞] is the time since the person
was last seen (before the current frame). When a person
keeps on being in the field of view, the reward is close to
1. When a person not seen for long time reappears in the
field-of-view, the reward is close to 2. In this way, the
desired behavior is encouraged.

Regarding audio, we would like the robot to look at
the speaking person(s), and therefore we define the audio
component of the reward function as:

Raud =


0 Nobody speaks

−0.5 Speakers are outside the FoV

2|Paud| Speakers within the FoV

(8)

where Paud is the set of speakers in the field of view.
Finally, we would like to penalize large and fast move-

ments since they are quite unnatural in social interactions.
This is why we propose a movement (negative) component
of the reward function, defined as:

Rmov = −Kmov

√
a2pan + a2tilt (9)

where apan and atilt are the two components of the action
space, and Kmov = 16 is a constant to put Rmov in a
similar numeric range as Rvid and Raud.

Tasks. In order to construct different tasks (reward func-
tions) we propose to use the defined components in two dif-
ferent ways. First, with simple combinations as in [18], and
then with more complex ones (i.e. non-linear). The first
family of reward functions is generated by sampling con-
vex combinations of the three components defined above:

Rτ = ωτvisRvis + ωτaudRaud + ωτmovRmov , (10)

where ωτvis, ω
τ
aud, ω

τ
mov ∈ [0, 1] are random convex weights,

meaning that ωτvis + ωτaud + ωτmov = 1.
We also wanted to compare the algorithms in more

complex environments. To that aim, we design our sec-
ond family of reward function using random multi-layer-
perceptron (MLP) networks. These input the value of the
three reward components defined above. The MLPs have
1 to 3 layers with 4 to 6 neurons each, that are activated
with a sigmoid with probability 0.75. The number of lay-
ers, the neurons per layer, the activation and the weights
are sampled randomly. Formally, we write:

Rτ = fτ (Rvis, Raud, Rmov;W
τ ) (11)

where fτ represents the sampled MLP network with sam-
pled connection weights W τ .
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Figure 4: Results on the gaze control environment. (right) Test-task performance vs. samples collected during meta-training on
the linear family of reward functions for the gaze control environment. RBF-PEARL outperforms PEARL. (left) Test-task performance vs.
samples collected during meta-training on the non-linear family of reward functions on the gaze control environment. RBF-PEARL also
outperforms PEARL with a larger margin.

Results. In Figure 4, we report the average return over
the set of meta-testing tasks over the met-training itera-
tions. More precisely we plot the average return mean and
standard deviation over the five independent runs, for the
gaze control environment with convex (top) and non-linear
(bottom) combinations of reward components.

Generally speaking, both PEARL and RBF-PEARL
are able to provide a better adaptation starting point with
the training progress. In addition, we observe that RBF-
PEARL has a steeper learning curve than PEARL on both
types of reward functions. More precisely for convex com-
binations of reward components, RBF-PEARL performs
comparably to PEARL during the first 400k steps. From
this point on, RBF-PEARL systematically outperforms
PEARL by a margin of 20-30. For the non-linear com-
binations of reward components, RBF-PEARL exhibits
superior performance from 600k meta-training steps on,
by a margin of roughly 50. Overall, on these two fami-
lies of tasks RBF-PEARL is faster than PEARL and has
better asymptotic performance, thus show-casing the ben-
efit of using the RBF layer. As excepted, both PEARL
and RBF-PEARL achieves better performances than the
batch of agents trained using the soft actor critic algorithm
with only 200 observations (SAC 200). In the Linear Gaze
Control environment, the average performances reach by
agents trained with the soft actor critic algorithm is infe-
rior to the performances of PEARL and RBF-PEARL by
a margin of 100. In the Non-Linear Gaze Control environ-
ment, the gap is lower between PEARL and SAC 200 as
PEARL outperforms SAC 200 by a margin of 50. With
RBF-PEARL, the gap of performances with SAC 200 is
more significant as RBF-PEARL exhibits superior perfor-
mance by a margin of 130.

C

Goal
R

A

B

E

D

Figure 5: Schematic representation of the social navigation
environment. The robot R must move towards its goal position
while navigating around five human agents (A, . . . , E).

4.3. Social navigation environment

Environment description. For this task, we took inspira-
tion from the literature on social group and crowd naviga-
tion [4], [5]. We propose to learn a navigation strategy for
a mobile robot. Our simulation environment is an empty
room of dimension 15×10 m. The room is populated with
five human agents, whose position at the beginning of each
episode is randomly initialized, see Figure 5. Likewise, we
randomly sample a robot goal position at the beginning of
an episode. The robot should reach the goal position be-
fore the end of the episode without disturbing the human
agents. In our setting, each human agent is given a ran-
dom goal position. During an episode the human agent
will go towards the goal position and will be assigned a
new one after reaching the original goal. To simulate the
behavior of human agents, we model the human agents’
motion using a social force model [47] to generate plausi-
ble trajectories. This framework also limits the amount of
collision between human agents. In our setup, the robot
has access to the coordinates of all people in the scene,
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their velocities and their orientations. The robot also has
access to its own velocity, coordinates and goal position.
While the robot always begins the episode at the same po-
sition (coordinates (14, 5)), its goal position is randomly
sampled following x ∼ U(0.0, 2.0) and y ∼ U(0.0, 10.0),
for the x and y coordinates respectively. Lastly, the ac-
tion space is a continuous two dimensional space set to
[−15, 15]× [−2, 2] , which corresponds respectively to the
angular velocity in rad.s−1 and linear velocity in m.s−1.
The maximum value of the linear and angular velocity are
chosen such that the robot can go as fast as any human
agent in the scene. In this environment, we use a smaller
number of neurons k = 5 for our RBF-layer.

Reward components. We define a set of five reward com-
ponents that will be combined to generate various tasks.
The dimension of the latent space of both PEARL and
RBF-PEARL is set to d = 5 for this environment.

First, the goal component Rg is designed to reward the
agent for reaching the goal position:

Rg = 1− d(r, g)

D
, (12)

where d(r, g) is the distance between the robot and the
goal and D is a normalizing factor to guarantee that the
goal component stays within [−1, 1].

Second, the collision component Rc is built to penalize
collisions between the robot and human agents:

Rc =

{
0 d(r, hi) > dc

−1 d(r, hi) < dc
(13)

where d(r, hi) is the distance between the robot and the
human agent i and dc is the collision threshold between
the robot and the human agent.

Third, the social component Rs is designed to reward
the robot in maintaining a safe distance from all human
agents. The social component depends on the distance
between the robot and each of the human agent. If the
distance between the robot and one of them is below a
certain threshold, the robot will be penalized. The closer
the robot is to the person, the higher the penalty will be.
If the robot is close to more than one human agent, only
the closest person to the robot is taken into consideration
(that is to say the human agent that will generate the
lowest reward):

Rs = min
i

[
d(r, hi)

ds
− 1

]
(14)

where d(r, hi) is the distance between the robot and the
human agent i and ds can be understood as a threshold.
Indeed, if the minimum distance between the robot and a
human is below ds, the reward becomes negative. Thus,
ds can be seen as the distance at which the robot enters
the comfort zone of people.

Fourth, the approach component Ra is designed to re-
ward the robot for positioning itself so as to avoid making

other humans agents aware of it. This component is in-
spired from the literature in social robotics, see [48]. In
this paper, the authors tried to quantify how aware peo-
ple are of a robot when it approach them. They use the
relative positions and orientations of the robot and the
human agent to evaluate the awareness of the robot by
the human. In our approach, we want to minimize the
distraction created by the robot when it navigates. There-
fore we are trying to minimize the awareness of the robot
by the human agents in the scene. We compute the aware-
ness of the robot by each human agent and use this as our
approach component by rewarding low awareness of the
robot. The approach component is defined for each hu-
man agent. It is a combination of visibility and direction.
While the visibility assesses how much visible the robot
is for the human agent, the direction assesses if the robot
is going in a direction that would make the human agent
more aware/afraid of it.

The visibility for human agent i is defined as :

Rvisible,i =

{
1− θi,r

θth
θi,r < θth

− θi,r−θthπ−θth otherwise
(15)

where θth is a threshold angle from which the robot is
visible to the human agent and θi,r is the angle of the
robot relative to the human agent i motion. If the robot
is in front of the human agent, the value will be close to
1, and if the robot is in the back of the human the value
will be close to −1.

The direction for human agent i is defined as :

Rdirection,i =

{
1− θr,i

π/2 θi,r < θth

1 otherwise
(16)

It is designed to address how the human agent perceives
the robot coming toward him. If the robot is coming closer
to the human agent, he/she will become more aware of it
and be distracted by it. On the other hand, even if the
robot is visible to the human agent, if it move away from
him/her, it will be less likely that the human agent will be
distracted by the robot.

To compute the approach reward component, we com-
pute the minimum over the visibility/direction product,
over the human agents:

Ra = min
i
Rvisible,i ·Rdirection,i (17)

Fifth, and last, the velocity component Rv is designed
to penalize the robot for going too fast when it is in front
of people. It is preferable to avoid having the robot being
fast in front of people as they may be disturbed or even
afraid by it. In our context in particular, we want to avoid
having the people focusing on the robot. Thus we define
a velocity component which penalizes the robot for fast-
moving if it is visible to the others human agents in the
scene. The velocity component for each human agent i is
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Figure 6: Results on the social navigation environment. Test-
task performance vs. samples collected during meta- training on
the family of reward functions corresponding to the social naviga-
tion environment. After 6 millions steps, RBF-PEARL outperforms
PEARL.

therefore defined as:

Rv,i =

{
−ev(1− θi,r

θth
) θi,r < θth

0 otherwise
(18)

where θth is a threshold angle from which the robot is visi-
ble and θi,r is the angle of the robot relative to the human
agent motion. To compute the reward component we take
the same methodology as with the social and approach
component, that is to say that we choose the minimum
value obtained from all the human agents in the scene:

Rv = min
i
Rv,i. (19)

Tasks. In order to evaluate the meta-RL algorithms in this
setting, we propose to test it with convex combinations,
as in the gaze control environment. This social naviga-
tion environment is more challenging because the higher
number of reward components makes it more difficult for
the learning process, and for the behavior generation as
there is a wider variety of possible reward functions. Thus
our family of reward functions is generated using convex
combinations of the five components defined above:

Rτ = ωτgRg + ωτcRc + ωτsRs + ωτaRa + ωτvRv , (20)

where ωτg , ω
τ
c , ω

τ
s , ω

τ
a , ω

τ
v ∈ [0, 1] are the randomly sampled

convex weights leading to task τ , meaning that ωτv +ωτc +
ωτs + ωτa + ωτv = 1.

Results. In Figure 6, we report the average return over the
meta-testing tasks with the progress of the meta-training
for PEARL and RBF-PEARL. As in the previous envi-
ronment, we report mean and standard deviation over five
runs. Similarly to the previous case, the performance of
the two methods look similar during the first steps of the

Figure 7: Illustration for the racer environment. The three
markers are depicted in blue, green and orange. Dark regions cor-
respond to high reward regions. In the task depicted in the figure,
the read and blue markers have two Gaussians, while the green one
has only one. The number of Gaussians, their mean and standard
deviation are randomly sampled for each task.

training. More importantly, the RBF layer seems to have
a positive impact on the asymptotic performance. Indeed,
after 6 millions steps, the RBF-PEARL algorithm per-
forms better than PEARL. Similarly to the gaze control
environment, both PEARL and RBF-PEARL performs
better than SAC-200 by a large margin (170)

4.4. Racer environment

Environment description. We evaluated the algorithms in
an additional non-social task with complex, non-linear re-
ward functions, called the racer environment [49]. The
agent has to navigate in a continuous two dimensional
scene for two hundred time steps (Fig. 7). Similar to a
car, the agent has an orientation and momentum, so that
it can only drive straight, or in a right or left curve. The
agent reappears on the opposite side if it exits one side. At
the beginning of an episode the agent is randomly placed
in the environment. The agents state is a vector s ∈ R120

corresponding to the agents’ position and orientation. The
position is encoded using a 10× 10 evenly distributed grid
of two-dimensional Gaussian radial basis functions. Sim-
ilarly, the orientation is also encoded using 20 Gaussian
radial basis functions. The action space of the agent con-
sists of a one dimensional continuous space set to [−1, 1].
The value of the action correspond to the force applied to
the agent, which then modifies the agents orientation and
position. For example, if the value of the action is close to
-1, the agent will make a left curve.

Reward components. We define three reward components,
each of them associated to one of the markers in Figure 7.
More precisely, each reward component rk is defined as
the maximum over Gaussian-shaped functions over the dis-
tance to the k-th marker dk:

rk = max

{
exp

(
− (dk − µk,j)2

σk,j

)}nk
j=1

(21)

where nk is the number of Gaussians for marker k, and µk,j
and σk,j are the mean and standard deviation of the j-th

9



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Env. steps (Millions)

10

20

30

40

50

60

70

Av
er

ag
e 

re
tu

rn

Racer

SAC 200
PEARL
RBF-PEARL

Figure 8: Results on the racer environment. Test-task per-
formance during meta-training. Once again with complex reward
functions, the interest of the RBF layer is confirmed.

Gaussian of marker k. For each task, the parameters of
the reward components are randomly sampled, as explain
in the following.

Tasks. The tasks differ in the parameters of each of the
three reward components. The number of Gaussians is
sampled uniformly: nk ∼ U{1, 2}. The two parameters
of each Gaussian component are sampled according to
µk,j ∼ U(0.0, 0.7) and σk,j ∼ U(0.001, 0.01). This sam-
pling instantiates the three reward components for task τ ,
rτk , and the final reward function writes:

Rτ =
1

3

3∑
k=1

rτk(dk). (22)

The dimension of the latent space of both PEARL and
RBF-PEARL is set to d = 3.

Results. RBF-PEARL shows consistently a stronger per-
formance than PEARL for the racer environment (Fig. 8).
After 300, 000 steps, RBF-PEARL constantly outperforms
PEARL. The asymptotic performances of RBF-PEARL is
also higher than PEARL. The average return at the end
of the training is 54 ± (11) for PEARL and 65 ± (2) for
RBF-PEARL. Also, both PEARL and RBF-PEARL out-
performs SAC 200 by a large margin, performing two times
better with a performances of only 30 for SAC 200.

5. Discussion

We would like to discuss four question that we believe
deserve some attention. First, whether variational meta-
RL is well suited for social robotics. Second, what is the
impact of the RBF layer in variational meta-RL. Third,
how the trainablility of the RBF layer’s parameters and
the number of RBF neurons influence its performance.
And finally, what is the mechanisms behind the improved
performance of the RBF layer.

5.1. Variational Meta-RL for Social Robotics
We proposed the application of variational meta-RL

to allow robots to quickly adapt to different social sce-
narios. We achieve this by enabling robots to adapt to
new reward functions which define the requirements of so-
cial scenarios, such as different preferred social distances
of humans. Indeed, our results from four simulation ex-
periments show that robotic agents are able to quickly
adapt with a variational meta-RL procedure (PEARL) to
different scenarios, i.e. reward functions, requiring only
200 observations (Fig. 4, 6, and 8). In difference, a clas-
sical RL algorithm trained on 200 observation (SAC 200)
reaches a significant lower performance. In the linear and
non linear gaze control environments the performances of
SAC 200 were respectively 23% lower and 25 % lower than
RBF-PEARL. In the social navigation environment, the
performances of SAC 200 were 47% lower. In the racer en-
vironment, the performances of SAC 200 were 53% lower
than RBF-PEARL.

To further demonstrate the interest of variational meta-
RL, we compared the performance of SAC trained on more
than 200 steps to the final models obtained with PEARL
and RBF-PEARL. As done in the previous experiments,
the two meta-RL algorithms only have 200 environment
steps to adapt to each test environment. Experiments are
done for the linear-gaze, non-linear gaze and racer envi-
ronments (Fig. 9). Please note, for these experiments the
number of gradient descent iterations per collected envi-
ronment observation is the same for the meta-RL algo-
rithms and for SAC. In the previous experiments (Sec. 4),
SAC was given more gradient descent iterations per ob-
servation to allow it to converge to a policy. In the first
two environments, SAC requires 50, 000 environment steps
to reach the performance of PEARL and RBF-PEARL,
which only benefit of 200 environment steps. Surpris-
ingly, even after training for 200, 000 steps, SAC does not
outperform significantly both meta-RL algorithms. This
is specially true for the third environment (racer), where
the performance of SAC does not seem to be superior to
the meta-RL algorithms, even after 100, 000 environment
steps. It would appear that SAC does not manage to learn
a moderately optimal action policy in the racer environ-
ment. After carefully looking at our results, we realize
that the optimal hyperparameters of SAC highly depend
on the learned task, and no set of parameters seems to be
commonly optimal for all tasks.

Lastly, we evaluated if the learned meta-policy by RBF-
PEARL is able to produce diverse and meaningful behav-
ior when adapted to different reward functions. We plotted
the trajectories of the robot agent in the social navigation
environment for four different reward weight combinations
(Fig. 10). The meta-policy is adapted to each combination
based on observations from 200 time steps. The adapted
behaviors are easily distinguishable from each other. For
a reward function that depends only on reaching the goal
(a), the robot has trouble reaching the goal position as
it bumps two times into humans and does not manage
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Figure 9: Performances reached by PEARL and RBF-PEARL compared to a full training with SAC: SAC needs several
thousand environment steps before reaching the same performance as PEARL and RBF-PEARL that use only 200 environments steps after
their meta-training phase. Results show the average test-task performance and standard deviation over 20 tasks and 5 seeds per environment
steps. (left): Gaze control environment with linear reward functions. (middle): Gaze control environment with non-linear reward functions.
(right): Racer environment. For the racer environment, SAC shows a low performance because for one set of hyperparameters it can’t solve
each of the 20 test tasks. PEARL and RBF-PEARL have not such a dependency on its hyperparameters.
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Figure 10: Trajectories in the social navigation environment
for 4 different weight combinations of the reward function.
RBF-PEARL learns to generate different behaviors depending on the
reward weight combination. The robot trajectory is represented by
the line with the black contour. The color indicates the time step.

to modify its path consequently. However putting more
weight on the speed component (b) helps the robot to
reach the goal position, as the robot learns to have a better
control of its angular and linear speed. By putting more
weight on the social and approach components (c and d),
the robot actively tries to avoid people around him even
if it results on a failure to reach the goal position. In con-
clusion, variational meta-RL successfully allows to quickly
adapt an agent to different reward functions which allows
to find efficiently an appropriate behavior for different so-
cial scenarios.

5.2. Performance of PEARL vs. RBF-PEARL

We compared the performance of RBF-PEARL to two
versions of PEARL. The first version, called PEARL, uses

Algorithm Lin. Gaze Non-Lin. Gaze Social Nav. Racer

PEARL 516± 10 460± 16 305± 30 56± 6
Vanilla PEARL 514± 6 469± 16 253± 18 56± 5
RBF-PEARL 549± 5 542± 10 344± 31 65± 3
RBF-PEARL-fp 543± 7 518± 15 322± 12 72± 6

Table 1: Final performances of different PEARL and RBF-
PEARL versions: RBF-PEARL outperforms PEARL and the
learning of RBF parameters is in most environments beneficial over
fixed parameters (RBF-PEARL-fp). Reported are the mean ± stan-
dard deviation over 5 seeds for each algorithms meta-testing perfor-
mance at the end of meta-training.

a neural network model with a similar number of param-
eters as RBF-PEARL. This is achieved by using a MLP
layer with kd output neurons where k is the numbers of
neurons of the RBF layer and d is the latent dimension, fol-
lowed by a ReLU activation unit instead of a RBF layer be-
fore the actor and critic network to process the task repre-
sentation z. All four experiments show that RBF-PEARL
outperforms consistently PEARL on meta-test task per-
formance (Fig. 4, 6, and 8). We further compared their
asymptotic performances on the 20 meta-testing tasks in
more detail (Table 1). In the two linear environments,
RBF-PEARL increases the performances over PEARL by
a margin of 6% in the linear gaze control environment
and 8% in the social navigation environment. For the two
non linear environments the improvement is larger. In the
racer environment, the performance rises by 27% from the
one obtained by PEARL. In the non linear gaze control
environment, the difference is 13% compared to PEARL.

In addition, we also report results obtained with a ver-
sion of PEARL without the additional MLP layer, called
Vanilla PEARL. We find that the performances of PEARL
and Vanilla PEARL are very similar in three of the four
tested environments (Table 1). The differences on the av-
erage final asymptotic return between the two is less than
5% and within their confidence ranges. PEARL only im-
proves significantly over Vanilla PEARL by 18% for the
social navigation environment.
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Figure 11: Ablation study on the number of RBF neurons per input dimension for RBF-PEARL: The optimal number of
neurons is around 10 for the three evaluated environments. Reported are the mean and standard deviation over 5 seeds for each algorithms
meta-testing performance after a certain amount of meta-training steps.
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Figure 12: Kullback-Leibler (KL) divergence and variance of task representation z for the linear gaze control environment:
Posterior collapse occurs in two dimensions (z2, z3) for both PEARL and RBF-PEARL (note that RBF-PEARL delays the collapse). We
report the average KL divergence (solid lines) and variance (dotted lines) of each dimension of the task representation variable z during
meta-training. The average is taken over five tasks chosen randomly among the 100 training tasks.

In summary, the results of PEARL and Vanilla PEARL
compared to RBF-PEARL show that the RBF layer allows
to improve the performance of PEARL significantly. This
effect can not be explained with a difference in their model
capacity, as PEARL and RBF-PEARL have a similar num-
ber of parameters. Instead, the computational properties
of the RBF layer seem to be the important factors.

5.3. Impact of trainablity and number of RBF neurons

We evaluated the effect of training the RBF param-
eters, i.e. centers c and scaling factors δ (6), to an RBF-
PEARL architecture with fixed parameters (RBF-PEARL-
fp). The centers are fixed by evenly distributing them over
an interval that was set to encompass the space of task
representations z. The scaling factors are fixed based on a
function of the distance between center points. They were
chosen so that two neighboring RBF neurons have both
an activation of 0.5 for a representation zk ∈ R lying in
the middle between both their centers. Overall we see that
training the centers and scaling factors of the RBF layer
have a beneficial impact on the asymptotic performances of
the RBF-PEARL algorithm (Table 1). On the non-linear
gaze control and social navigation environments, training
the RBF parameters improves the final asymptotic per-
formances by 2% to 6%. Only, in the racer environment
having fixed parameters improved performance of 10%. In

summary, the advantage of learning the parameters of the
RBF layer is task-dependent, but seems to be for most
tasks beneficial.

Lastly, we analyze the effect of the number of neurons
per input dimension in the RBF layer (Fig. 11). On the
three evaluated environments, we found that the number
of neurons has a noticeable effect on the asymptotic per-
formance. The optimal number is around 10 on the three
evaluated environments: 9 for linear gaze control, 9 for
non-linear gaze control, and 12 for racer. We believe that
the performances drop for higher numbers of neurons may
be due to overfitting on the training tasks.

5.4. How does the RBF layer improve performance?

The RBF layer improves the performance of the vari-
ational meta-RL procedure, but what are the mechanisms
behind this improvement? In general, the layer can have
three potential influences on the learning procedure. First,
as its input, task representation z, is also learned, it could
alter the learning objective of z resulting in a different
representation. Second, it could alter the temporal learn-
ing dynamics of the task representation, leading also to
different learning dynamics of the downstream policy and
value networks. Third, its output z̃ could provide an im-
proved representation for the policy and value networks.
We investigated these factors on the linear gaze control
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task (Sec. 4.2). We restricted our analysis to a RBF layer
with 3 RBF neurons per input dimension. This low di-
mensional representation makes it easier to analyze and
visualize the results compared to the optimal configura-
tion with 9 RBF neurons per input dimension.

Influence on the learned input task representation z. The
learned task representations z of PEARL without (Fig. 1,
left-bottom) and with a RBF layer (Fig. 14) have only
minor differences. The average and standard deviation
over the 100 meta-training task representation means µ per
dimension are for PEARL: z1: 0.04±3.68, z2: 1.01±0.006,
z3: 1.01±0.003; and for RBF-PEARL: z1: 0.06±3.51, z2:
1.02± 0.009, z3: 1.03± 0.032.

Both representations have a posterior collapse in two
(z2, z3) of the three dimensions. Only dimension z1 is
representing a meaningful distinction of tasks. The repre-
sentation by PEARL without a RBF layer shows a minor
larger spread of the task representations in dimension z1
than RBF-PEARL (3.68 compared to 3.51). And RBF-
PEARL has a minor larger spread in dimension z3 (0.032
compared to 0.003), but both these differences seem neg-
ligible.

Both representations show a clear clustering of tasks
where tasks with a high reward weight on the visual com-
ponent (red colored) are on one side in z1. Representa-
tion of the tasks with a high weight on the movement
component are clustered on the opposite end (green col-
ored). Tasks with a high weight on the audio component
(blue/brown colored) are in the middle. Although the rep-
resentations (with and without RBF layer) are inverted to
each other, both have this general cluster topology which
should therefore not result in a difference on the down-
stream networks that learn based on them.

We further evaluated if the learned representation z
obtained with the RBF layer has an influence on the per-
formance increase. We trained an actor and critic net-
work with the pre-trained context encoder obtained from
PEARL and RBF-PEARL. No significant differences nei-
ther on their learning curves nor on their final perfor-
mances can be observed (Fig. 13). This indicates that dif-
ferences in the performance of PEARL vs. RBF-PEARL
do not result from their differences in the learned repre-
sentation z.

In summary, the differences between the learned task
representation z with and without the RBF layer are mi-
nor. They do not explain the increase in performance of
RBF-PEARL.

Influence on the temporal dynamics of learning task repre-
sentation z. We analyzed the temporal dynamics of learn-
ing z by looking how posterior collapse happens on the
three dimensions of task representation z. The differences
on how posterior collapse occurred between PEARL and
RBF-PEARL could explain their performance differences.
To measure it, we examine the KL divergence and the vari-
ance of the posterior distribution on each of the dimensions

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Env. steps (Millions)

375

400

425

450

475

500

525

550

Av
er

ag
e 

re
tu

rn

Linear Gaze Control

policy  trained  on  PEARL s  task  rep. z
policy  trained  with  RBF-PEARL s  task  rep. z

Figure 13: Performance of policies trained on learned (and
frozen) context-encoders from PEARL and RBF-PEARL:
Test-task performance during meta-training on the linear gaze-
control environment. It shows no significant differences between
the two encoders indicating that the performance difference between
PEARL and RBF-PEARL is not due to their differences in the
learned task representation z.

of the task representation during the meta-training stage
(Fig. 12). Posterior collapse happens for both methods in
two of the three dimensions (z2, z3). Nonetheless, RBF-
PEARL delays the posterior collapse for 400k steps com-
pared to PEARL. Similarly also for dimension z1, RBF-
PEARL requires longer to learn the final representation
as shown by the longer time of the KL loss and variance
to reach their asymptotic levels (Fig. 12, left). This delay
could explain why RBF-PEARL performs slightly below
PEARL for the first 400k steps (Fig. 4, left). Afterwards
the KL loss and variance are similar between RBF-PEARL
and PEARL.

In conclusion, the RBF layer has a temporal effect on
the learning of task representation z by delaying it. This
includes a delay of the posterior collapse. This might affect
the final performance of the RL algorithm, for example, by
inducing a higher exploration during learning. Nonethe-
less, the impact of this effect can not be clearly defined and
we believe it to be of minor consequence for the learning
performance.

Influence of the output representation z̃. The final influ-
ence that the RBF layer has on the performance of RBF-
PEARL is by its output representation z̃ that is given as
input to the downstream policy and value networks instead
of z. We visualized this representation for the RBF neu-
rons that encode the non-collapsing dimension z1 (Fig. 14,
right). It lifts the one-dimensional representation z1 into
a three-dimensional space z̃1. Analyzing the shape of the
Gaussians associated with z̃1 (Fig. 14, middle), each Gaus-
sian is centered around a specific cluster of task represen-
tations. The first Gaussian z̃1,1 specializes in tasks with a
high weight on the movement component (green colored).
Representations of tasks with a high weight on the audio
component (blue/brown colored) are centered around the
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Figure 14: RBF-PEARL’s task representation with the Gaussian associated to dimension z1 with no posterior collapse: The
RBF layer projects task representation z1 ∈ R in a higher dimension z̃1 ∈ R3, where each RBF Gaussian learns to represent a specific task
type. Each colored dot corresponds to the representation of one of the 100 meta-training tasks. The color represents the pre-dominant reward
weight component of the reward function, i.e. the task type. Red: largest weight is the visual weight. Blue/brown: high audio weights.
Green: high movement weights. (left): Three dimensional task representation z learned by the task encoder. The tasks are only spread in
dimension z1. The other dimensions (z2, z3) have a posterior collapse. (middle): RBF Gaussians associated to the input dimension without
posterior collapse (z1). Each Gaussian specializes to represent a different task type. (right): The three dimensional representation obtained
by the RBF layer for input dimension z1.

activation region of the second Gaussian z̃1,2. The third
Gaussian z̃1,3 specializes in tasks with a high weight on
the visual component (red colored). We believe this effect
is the main cause of the RBF layers performance increase.
The objective of the downstream networks is to learn spe-
cific policies and value functions for the different tasks,
i.e. tasks in which the visual, audio, or movement com-
ponent is more important. Differentiating between these
tasks is difficult from the one-dimensional representation
z1 learned by standard PEARL. To identify for example
audio tasks which are clustered in the middle of the rep-
resentation in z1 (Fig. 1, left-bottom), the downstream
networks have to learn a rule that defines this region using
two borders: y > z1 > x. In contrast, for RBF representa-
tion z̃1 it is only necessary to identify if a certain Gaussian
has a large activation. In the case of audio tasks, the sec-
ond Gaussian should be mainly activated: z̃1,2 > x. This
seems to reduce the complexity of the rules that the down-
stream networks have to learn to identify tasks making it
easier to learn specific policies and values for them.

In summary, we believe the main effect that the RBF
layer has to improve the performance is based on its changed
task representation z̃. The representation seems to allow
the downstream networks to identify certain tasks easier
and to learn specific outputs for them. Nonetheless, this
explanation is only an intuition and should be further ex-
plored in future research.

6. Conclusion

In this exploratory study, we investigate the use and
limitations of variational meta-RL for social robotics. We
showed that meta-RL successfully learns to adapt quickly
(within 200 steps) to different reward function formula-
tions which can help to identify the reward function that

describes a wanted social behavior faster. Nonetheless,
state-of-the-art methods exhibited a posterior collapse in
our task, which is problematic in meta-RL since the en-
coder is supposed to accumulate information for better
generalization, and collapsed encoding dimensions cannot
do so. We started investigating how to mitigate poste-
rior collapse in variational meta-RL by adding a RBF net-
work after each encoded dimension. Based on the result in
Tab. 1, and the analysis of the representation learned by
RBF-PEARL, our algorithm improves the performances
of meta-RL algorithm for reward design in social robotics.
Our RBF layer improve asymptotic performances of the
PEARL algorithm in several different environment, all in-
spired of social robotics tasks. The PEARL algorithm
learns a sub-optimal representation of the task. While we
do not solve this issue, the RBF-PEARL algorithm miti-
gates the effect of this sub-optimal representation, provid-
ing the actor and critic network with a different representa-
tion of the task using the dimensions of the task represen-
tation that do not suffer of posterior collapse. The results
clearly demonstrate that the use of RBF network mitigates
the effect of posterior collapse, and allows for steeper learn-
ing curves and higher asymptotic performance. We be-
lieve such studies open the door for better understanding
of meta-RL for social robotics, a clearly underinvestigated
domain. We hope that our findings will help fostering re-
search in this direction.

Acknowledgements

This research was partially funded by the ANR MIAI
institute (ANR-19-P3IA-0003), H2020 SPRING (#871245),
and by the ANR ML3RI (ANR-19-CE33-0008-01).

14



References

[1] T. Fong, I. Nourbakhsh, K. Dautenhahn, A survey of socially
interactive robots, Robotics and autonomous systems 42 (3-4)
(2003) 143–166.

[2] R. S. Sutton, A. G. Barto, Reinforcement learning: An intro-
duction, MIT press, 2018.

[3] N. Akalin, A. Loutfi, Reinforcement learning approaches in so-
cial robotics, Sensors 21 (4) (2021) 1292.

[4] Y. F. Chen, M. Liu, M. Everett, J. P. How, Decentralized non-
communicating multiagent collision avoidance with deep rein-
forcement learning, in: 2017 IEEE international conference on
robotics and automation (ICRA), IEEE, 2017, pp. 285–292.

[5] Z. Zhou, P. Zhu, Z. Zeng, J. Xiao, H. Lu, Z. Zhou, Robot nav-
igation in a crowd by integrating deep reinforcement learning
and online planning, Applied Intelligence (2022) 1–17.

[6] Y. Li, Deep reinforcement learning, arXiv preprint
arXiv:1810.06339.

[7] M. E. Taylor, P. Stone, Transfer learning for reinforcement
learning domains: A survey., Journal of Machine Learning Re-
search 10 (7).

[8] Z. Zhu, K. Lin, J. Zhou, Transfer learning in deep reinforcement
learning: A survey, arXiv preprint arXiv:2009.07888.

[9] D. P. Kingma, M. Welling, Auto-encoding variational bayes,
arXiv:1312.6114.

[10] K. Rakelly, A. Zhou, C. Finn, S. Levine, D. Quillen, Efficient
off-policy meta-reinforcement learning via probabilistic context
variables, in: International conference on machine learning,
PMLR, 2019, pp. 5331–5340.

[11] D. S. Broomhead, D. Lowe, Radial basis functions, multi-
variable functional interpolation and adaptive networks, Tech.
rep., Royal Signals and Radar Establishment Malvern (United
Kingdom) (1988).

[12] J. Park, I. W. Sandberg, Universal approximation using radial-
basis-function networks, Neural computation 3 (2) (1991) 246–
257.

[13] P. H. Zadeh, R. Hosseini, S. Sra, Deep-rbf networks re-
visited: Robust classification with rejection, arXiv preprint
arXiv:1812.03190.

[14] S. Pineda-Arango, D. Obando-Paniagua, A. Dedeoglu,
P. Kurzendörfer, F. Schestag, R. Scholz, Improving sam-
ple eficiency with normalized rbf kernels, arXiv preprint
arXiv:2007.15397.

[15] W. Chen, X. Han, G. Li, C. Chen, J. Xing, Y. Zhao, H. Li, Deep
rbfnet: Point cloud feature learning using radial basis functions,
arXiv preprint arXiv:1812.04302.

[16] K. Asadi, R. E. Parr, G. D. Konidaris, M. L. Littman,
Deep rbf value functions for continuous control, arXiv preprint
arXiv:2002.01883.

[17] M. Vázquez, A. Steinfeld, S. E. Hudson, Maintaining awareness
of the focus of attention of a conversation: A robot-centric rein-
forcement learning approach, in: 2016 25th IEEE International
Symposium on Robot and Human Interactive Communication
(RO-MAN), IEEE, 2016, pp. 36–43.
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[47] C. Pedica, H. Vilhjálmsson, Social perception and steering for
online avatars, in: International Workshop on Intelligent Vir-
tual Agents, Springer, 2008, pp. 104–116.

[48] S. Satake, T. Kanda, D. F. Glas, M. Imai, H. Ishiguro,
N. Hagita, A robot that approaches pedestrians, IEEE Trans-
actions on Robotics 29 (2) (2012) 508–524.

[49] C. Reinke, X. Alameda-Pineda, Xi-learning: Successor feature
transfer learning for general reward functions, arXiv preprint
arXiv:2110.15701.

16


	1 Introduction
	2 Related work
	2.1 Social Robotics
	2.2 Deep Meta-Reinforcement-Learning
	2.3 Posterior Collapse

	3 Approach
	3.1 Preliminaries
	3.2 RBF for Variational Meta-RL

	4 Experimental Results
	4.1 Evaluation protocol
	4.2 Gaze control environment
	4.3 Social navigation environment
	4.4 Racer environment

	5 Discussion
	5.1 Variational Meta-RL for Social Robotics
	5.2 Performance of PEARL vs. RBF-PEARL
	5.3 Impact of trainablity and number of RBF neurons
	5.4 How does the RBF layer improve performance?

	6 Conclusion

