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Abstract

Object tracking is an ubiquitous problem that appears in many applications
such as remote sensing, audio processing, computer vision, human-machine
interfaces, human-robot interaction, etc. Although thoroughly investigated
in computer vision, tracking a time-varying number of persons remains a
challenging open problem. In this paper, we propose an on-line variational
Bayesian model for multi-person tracking from cluttered visual observations
provided by person detectors. The paper has the following contributions.
We propose a variational Bayesian framework for tracking an unknown and
varying number of persons. Our model results in a variational expectation-
maximization (VEM) algorithm with closed-form expressions both for the
posterior distributions of the latent variables and for the estimation of the
model parameters. The proposed model exploits observations from multiple
detectors, and it is therefore multimodal by nature. Finally, we propose
to embed both object-birth and object-visibility processes in an effort to
robustly handle temporal appearances and disappearances. Evaluated on
classical multiple person tracking datasets, our method shows competitive
results with respect to state-of-the-art multiple-object tracking algorithms,
such as the probability hypothesis density (PHD) filter, among others.
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1. Introduction1

The problem of tracking a varying number of objects is ubiquitous in a2

number of fields such as remote sensing, computer vision, human-computer3

interaction, human-robot interaction, etc. While several off-line multi-object4

tracking methods are available, on-line multi-person tracking is still extremely5

challenging [1]. In this paper we propose an on-line tracking method within6

the tracking-by-detection (TbD) paradigm, which gained popularity in the7

computer vision community thanks to the development of efficient and ro-8

bust object detectors [2]. Moreover, one advantage of TbD paradigm is the9

possibility of using linear mappings to link the kinematic (latent) states of10

the tracked objects to the observations issued from the detectors. This is pos-11

sible because object detectors efficiently capture and filter out the non-linear12

effects, thus delivering detections that are linearly related to the kinematic13

latent states.14

In addition to the difficulties associated to single-object tracking (occlu-15

sions, self-occlusions, visual appearance variability, unpredictable temporal16

behavior, etc.), tracking a varying and unknown number of objects makes17

the problem more challenging because of the following reasons: (i) the ob-18

servations coming from detectors need to be associated to the objects that19

generated them, which includes the process of discarding detection errors,20

(ii) the number of objects is not known in advance and hence it must be21

estimated, mutual occlusions (not present in single-tracking scenarios) must22

be robustly handled, (iv) when many objects are present the dimension of23

the state-space is large, and hence the tracker has to handle a large number24

of hidden-state parameters, (v) the number of objects varies over time and25

one has to deal with hidden states of varying dimensionality, from zero when26

there is no visible object, to a large number of detected objects. Note that27

in this case and if a Bayesian setting is being considered, as is often the case,28

the exact recursive filtering solution is intractable.29

In computer vision, previously proposed methodological frameworks for30

multi-target tracking can be divided into three groups. Firstly, the trans-31

dimensional Markov chain model [3], where the dimensionality of the hidden32

state-space is part of the state variable. This allows to track a variable num-33

ber of objects by jointly estimating the number of objects and their kinematic34

states. In a computer vision scenario, [4, 5, 6] exploited this framework for35

2



tracking a varying number of objects. The main drawback is that the states36

are inferred by means of a reversible jump Markov chain Monte Carlo sam-37

pling, which is computationally expensive [7]. Secondly, a random finite set38

multi-target tracking formulation was proposed [8, 9, 10]. Initially used for39

radar applications [8], in this framework the targets are modeled as real-40

izations of a random finite set which is composed of an unknown number of41

elements. Because an exact solution to this model is computationnally inten-42

sive, an approximation known as the probability hypothesis density (PHD)43

filter was proposed [11]. Further sampling-based approximations of random44

det based filters were subsequently proposed, e.g. [12, 13, 14]. These were45

exploited in [15] for tracking a time-varying number of active speakers using46

auditory cues and in [16] for multi-target tracking using visual observations.47

Thirdly, conditional random fields (CRF) were also chosen to address multi-48

target tracking [17, 18, 19]. In this case, tracking is casted into an energy49

minimization problem. In another line of research, in radar tracking, other50

popular multi-targets tracking model are joint probabilistisc data assocation51

(JPDA), and multiple hypothesis filters [20].52

In this paper we propose an on-line variational Bayesian framework for53

tracking an unknown and varying number of persons. Although variational54

model are very popular in machine learning, their use in computer vision for55

object tracking has been limited to tracking situation involving a fixed num-56

ber of targets [21]. Variational Bayes methods approximate the joint a poste-57

riori distribution of the latent variables by a separable distribution [22, 23].58

In an on-line tracking scenario, where only causal (past) observations can59

be used, this translates into approximating the filtering distribution. This60

is in strong contrast with off-line trackers that use both past and future61

observations. The proposed tracking algorithm is therefore modeling the a62

posteriori distribution of the hidden states given all past observations. Im-63

portantly, the proposed framework leads to closed-form expressions for the64

posterior distributions of the hidden variables and for the model parameters,65

thus yielding an intrinsically efficient filtering procedure implemented via an66

variational EM (VEM) algorithm. In addition, a clutter target is defined so67

that spurious observations, namely detector failures, are associated to this68

target and do not contaminate the filtering process. Furthermore, our for-69

malism allows to integrate in a principled way heterogeneous observations70

coming from various detectors, e.g, face, upper-body, silhouette, etc. Re-71

markably, objects that come in and out of the field of view, namely object72

appearance and disappearance, are handled by object birth and visibility73

3



processes. In details, we replace the classical death process by a visibility74

process which allows to put asleep tracks associated with persons that are75

no longer visible. The main advantage is that these tracks can be awaken76

as soon as new observations match their appearance with high confidence.77

Summarizing, the paper contributions are:78

• Cast the problem of tracking a time-varying number of people into79

a variational Bayes formulation, which approximates the a posteriori80

filtering distribution by a separable distribution;81

• A VEM algorithm with closed-form expressions, thus inherently effi-82

cient, for the update of the a posteriori distributions and the estimation83

of the model parameters from the observations coming from different84

detectors;85

• An object-birth and an object-visibility process allowing to handle per-86

son appearance and disappearance due either to occlusions or people87

leaving the visual scene;88

• A thorough evaluation of the proposed method compared with the89

state-of-the-art in two datasets, the cocktail party dataset and a dataset90

containing several sequences traditionally used in the computer vision91

community to evaluate multi-person trackers.92

The remainder of this paper is organized as follows. Section 2 reviews93

previous work relevant to our work method. Section 3 details the proposed94

Bayesian model and a variational model solution is presented in Section 4.95

In Section 5, we depict the birth and visibility processes allowing to handle96

an unknown and varying number of persons. Section 6 describes results of97

experiments and benchmarks to assess the quality of the proposed method.98

Finally, Section 7 draws some conclusions.99

2. Related Work100

Generally speaking, object tracking is the temporal estimation of the101

object’s kinematic state. In the context of image-based tracking, the object102

state is typically a parametrization of its localization in the (2D) image plane.103

In computer vision, object tracking has been thoroughly investigated [24].104

Objects of interest could be people, faces, hands, vehicles, etc. According105

to the considered number of objects to be tracked, tracking can be classified106
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into single-object tracking, fixed-number multi-object tracking, and varying-107

number multi-object tracking.108

Methods for single object tracking consider only one object and usually109

involve an initialization step, a state update step, and a reinitialization step110

allowing to recover from failures. Practical initialization steps are based on111

generic object detectors allowing to scan the input image in order to find112

the object of interest [25, 26]. Object detectors can be used for the reinitial-113

ization step as well. However, using generic object detectors is problematic114

when other objects of the same kind than the tracked object are present in115

the visual scene. In order to resolve such ambiguities, different complemen-116

tary appearance models have been proposed, such as object templates, color117

appearance models, edges (image gradients) and texture, (e.g. Gabor fea-118

tures and histogram of gradient orientations). Regarding the update step,119

the current state can be estimated from previous states and observations120

with either deterministic [27] or probabilistic [28] methods.121

Even if it is still a challenging problem, tracking a single object is very122

limited in scope. Rapidly, the computer vision community drove its attention123

towards fixed-number multi-object tracking [29]. Additional difficulties are124

encountered when tracking multiple objects. Firstly, there is an increase of125

the tracking state dimensionality as the multi-object tracking state dimen-126

sionality is the single object state dimensionality multiplied by the number127

of tracked objects. Secondly, associations between observations and objects128

are required. Since the observation-to-object association problem is combi-129

natorial [30, 20], it must be carefully addressed when the number of objects130

and of observations are large. Thirdly, because of the presence of multiple131

targets, tracking methods have to be robust also to mutual occlusions.132

In most practical applications, the number of objects to be tracked, is133

not only unknown, but it also varies over time. Importantly, tracking a134

time-varying number or objects requires an efficient mechanism to add new135

objects entering the field of view, and to remove objects that moved away.136

In a probabilistic setting, these mechanisms are based on birth and death137

processes. Efficient multi-object algorithms have to be developed within138

principled methodologies allowing to handle hidden states of varying dimen-139

sionality. In computer vision, the most popular methods are based on condi-140

tional random fields [31, 18, 19, 32], on random finite sets [10, 15, 16] or on141

the trans-dimensional Markov chain [3, 4, 5, 6]. [6] presents an interesting142

approach where occlusion state of a tracked person is explicitly modeled in143

the tracked state and used for observation likelihood computation. Less pop-144
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ular but successful methodologies include the Bayesian multiple blob tracker145

of [33], the boosted particle filter for multi-target tracking of [34] and the146

Rao-Blackwellized filter for multiple objects tracking [35], graph based rep-147

resentation for multi-object tracking [36, 37]. It has to be noticed in other148

communities, such as radar tracking, multi-object tracking has been deeply149

investigated. Many models have been proposed such as the probabilistic data150

association filter (PDAF), the joint PDAF, multiple hypothesis tracking [20].151

However, the differences between multi-object tracking in radar and in com-152

puter vision are mainly two. On the one hand, most tracking method for153

radar consider point-wise objects, modeling a punctual latent state, whereas154

in computer vision objects are represented using bounding boxes in addition155

to the punctual coordinates. On the other hand, computer vision applica-156

tions benefit from the use of visual appearance, which is mainly used for157

object identification [38].158

Currently available multi-object tracking methods used in computer vi-159

sion applicative scenarios suffer from different drawbacks. CRF-based ap-160

proaches are naturally non-causal, that is, they use both past and future161

information. Therefore, even if they have shown high robustness to clutter,162

they are only suitable for off-line applications when smoothing (as opposite163

to filtering) techniques can be used. PHD filtering techniques report good164

computational efficiency, but they are inherently limited since they provide165

non-associated tracks. In other words, these techniques require an external166

method in order to associate observations and tracks to objects. Finally, even167

if trans-dimensional MCMC based tracking techniques are able to associate168

tracks to objects using only causal information, they are extremely complex169

from a computational point of view, and their performance is very sensi-170

tive to the sampling procedure used. In contrast, the variational Bayesian171

framework we propose associates tracks to previously seen objects and cre-172

ates new tracks in an unified framework that filters past observations in an173

intrinsically efficient way, since all the steps of the algorithm are expressed174

in closed-form. Hence the proposed method robustly and efficiently tracks175

a varying and unknown number of persons from a combination of image176

detectors.177
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3. Variational Bayesian Multiple-Person Tracking178

3.1. Notations and Definitions179

We start by introducing our notations. Vectors and matrices are in bold180

A, a, scalars are in italic A, a. In general random variables are denoted181

with upper-case letters, e.g. A and A, and their realizations with lower-case182

letters, e.g. a and a.183

Since the objective is to track multiple persons whose number may vary184

over time, we assume that there is a maximum number of people, denoted by185

N , that may enter the visual scene. This parameter is necessary in order to186

cast the problem at hand into a finite-dimensional state space, consequently187

N can be arbitrarily large. A track n at time t is associated to the existence188

binary variable etn taking the value etn = 1 if the person has already been189

seen and etn = 0 otherwise. The vectorization of the existence variables at190

time t is denoted by et = (et1, ..., etN) and their sum, namely the effective191

number of tracked persons at t, is denoted by Nt =
∑N

n=1 etn. The existence192

variables are assumed to be observed in sections 3 and 4; Their inference,193

grounded in a track-birth stochastic process, is discussed in section 5.194

The kinematic state of person n is a random vector Xtn = (L>tn,U
>
tn)> ∈195

R6, where Ltn ∈ R4 is the person location, i.e., 2D image position, width and196

height, and Utn ∈ R2 is the person velocity in the image plane. The multi-197

person state random vector is denoted by Xt = (X>t1, . . . ,X
>
tN)> ∈ R6N .198

Importantly, the kinematic state is described by a set of hidden variables199

which must be robustly estimated.200

In order to ease the challenging task of tracking multiple persons with a201

single static camera, we assume the existence of I detectors, each of them202

providing Ki
t localization observations at each time t, with i ∈ [1 . . . I]. Fig. 1203

provides examples of face and upper-body detections (see Fig. 1(a)) and204

of full-body detections (see Fig. 1(b)). The k-th localization observation205

gathered by the i-th detector at time t is denoted by yitk ∈ R4, and represents206

the location (2D position, width, height) of a person in the image. The207

set of observations provided by detector i at time t is denoted by yit =208

{yitk}
Ki

t
k=1, and the observations provided by all the detectors at time t is209

denoted by yt = {yit}Ii=1. Associated to each localization detection yitk, there210

is a photometric description of the person’s appearance, denoted by hitk.211

This photometric observation is extracted from the bounding box of yitk.212

Altogether, the localization and photometric observations constitute the raw213

observations oitk = (yitk,h
i
tk) used by our tracker. Analogous definitions to yit214
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(a) (b)

Figure 1: Examples of detections used as observations by the proposed person tracker:
upper-body, face (a), and full-body (b) detections. Notice that one of the faces was not
detected and that there is a false full-body detection in the background.

and yt hold for hit = {hitk}
Kt
k=1, ht = {hit}Ii=1, oit = {oitk}

Kt
k=1 and ot = {oit}Ii=1.215

Importantly, when we write the probability of a set of random variables,216

we refer to the joint probabilities of all random variables in that set. For217

instance: p(oit) = p(oit1, . . . ,o
i
tKi

t
).218

We also define an observation-to-person assignment (hidden) variable Zi
tk219

associated with each observation oitk. Formally, Zi
tk is a categorical variable220

taking values in the set {1 . . . N}: Zi
tk = n means that oitk is associated to221

person n. Zi
t and Zt are defined in an analogous way to yit and yt. These222

assignment variables can be easily used to handle false detections. Indeed, it223

is common that a detection corresponds to some clutter instead of a person.224

We cope with these false detections by defining a clutter target. In practice,225

the index n = 0 is assigned to this clutter target, which is always visible,226

i.e. et0 = 1 for all t. Hence, the set of possible values for Zi
tk is extended to227

{0} ∪ {1 . . . N}, and Zi
tk = 0 means that observation oitk has been generated228

by clutter and not by a person. The practical consequence of adding a clutter229

track is that the observations assigned to it play no role in the estimation of230

the parameters of the other tracks, thus leading to estimation rules inherently231

robust to outliers.232

3.2. The Proposed Bayesian Multi-Person Tracking Model233

The on-line multi-person tracking problem is cast into the estimation of234

the filtering distribution of the hidden variables given the causal observations235
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Figure 2: Graphical representation of the proposed multi-target tracking probabilistic
model.

p(Zt,Xt|o1:t, e1:t), where o1:t = {o1, . . . ,ot}. The filtering distribution can236

be rewritten as:237

p(Zt,Xt|o1:t, e1:t) =
p(ot|Zt,Xt,o1:t−1, e1:t)p(Zt,Xt|o1:t−1, e1:t)

p(ot|o1:t−1, e1:t)
. (1)

Importantly, we assume that the observations at time t only depend on the238

hidden and visibility variables at time t. Therefore (1) writes:239

p(Zt,Xt|o1:t, e1:t) =
p(ot|Zt,Xt, et)p(Zt|et)p(Xt|o1:t−1, e1:t)

p(ot|o1:t−1, e1:t)
. (2)

The denominator of (2) only involves observed variables and therefore its240

evaluation is not necessary as long as one can normalize the expression arising241

from the numerator. Hence we focus on the three terms of the latter, namely242

the observation model p(ot|Zt,Xt, et), the observation-to-person assignment243

prior distribution p(Zt|et) and the dynamics of the latent state p(Xt|Xt−1, et),244

which appear when marginalizing the predictive distribution p(Xt|o1:t−1, e1:t)245

with respect to Xt−1. Figure 2 shows a graphical schematic representation246

of the proposed probabilistic model.247

3.2.1. The Observation Model248

The joint observations are assumed to be independent and identically249

distributed:250

p(ot|Zt,Xt, et) =
I∏
i=1

Ki
t∏

k=1

p(oitk|Zi
tk,Xt, et). (3)
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In addition, we make the reasonable assumption that, while localization ob-251

servations depend both on the assignment variable and kinematic state, the252

appearance observations only depend on the assignment variable, that is the253

person identity, but not on his/her kinematic state. We also assume the lo-254

calization and appearance observations to be independent given the hidden255

variables. Consequently, the observation likelihood of a single joint observa-256

tion can be factorized as:257

p(oitk|Zi
tk,Xt, et) = p(yitk,h

i
tk|Zi

tk,Xt, et) (4)

= p(yitk|Zi
tk,Xt, et)p(h

i
tk|Zi

tk, et).

The localization observation model is defined depending on whether the ob-258

servation is generated by clutter or by a person:259

• If the observation is generated from clutter, namely Zi
tk = 0, the vari-260

able yitk follows an uniform distribution with probability density func-261

tion u(yitk);262

• If the observation is generated by person n, namely Zi
tk = n, the vari-263

able yitk follows a Gaussian distribution with mean PiXtn and covari-264

ance Σi: yitk ∼ g(yitk; P
iXtn,Σ

i)265

The linear operator Pi maps the kinematic state vectors onto the i-th space of266

observations. For example, when Xtn represents the upper-body kinematic267

state (upper-body localization and velocity) and yitk represents the upper-268

body localization observation, Pi is a projection which, when applied to a269

state vector, only retains the localization components of the state vector.270

When yitk is a face localization observation, the operator Pi is a composition271

of the previous projection, and an affine transformation mapping an upper-272

body bounding-box onto its corresponding face bounding-box. Finally, the273

full observation model is compactly defined by274

p(yitk|Zi
tk = n,Xt, et) = u(yitk)

1−etn
(
u(yitk)

δ0ng(yitk; PiXtn,Σ
i)1−δ0n

)etn
, (5)

where δij stands for the Kronecker function.275

The appearance observation model is also defined depending on whether
the observations is clutter or not. When the observation is generated by clut-
ter, the appearance observation follows a uniform distribution with density
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function u(hitk). When the observation is generated by person n, the appear-
ance observation follows a Bhattacharya distribution with density defined
as

b(hitk; hn) =
1

Wλ

exp(−λdB(hitk,hn)),

where λ is a positive skewness parameter, dB(., .) is the Battacharya distance276

between histograms, hn is the n-th person’s reference appearance model2.277

This gives the following compact appearance observation model:278

p(hitk|Zi
tk = n,Xt, et) = u(hitk)

1−etn(u(hitk)
δ0nb(hitk; hn)1−δ0n)etn . (6)

3.2.2. The Observation-to-Person Prior Distribution279

The joint distribution of the assignment variables factorizes as:280

p(Zt|et) =
I∏
i=1

Ki
t∏

k=1

p(Ztk|et). (7)

When observations are not yet available, given existence variables et, the281

assignment variables Zi
tk are assumed to follow multinomial distributions282

defined as:283

p(Zi
tk = n|et) = etna

i
tn with

N∑
n=0

etna
i
tn = 1. (8)

Because etn takes the value 1 only for actual persons, the probability to assign284

an observation to a non-existing person is null.285

3.2.3. The Predictive Distribution286

The kinematic state predictive distribution represents the probability dis-287

tribution of the kinematic state at time t given the observations up to time288

t − 1 and the existence variables p(Xt|o1:t−1, e1:t). The predictive distribu-289

tion is mainly driven by the dynamics of people’s kinematic states, which are290

modeled consdering two hypothesis. Firstly the kinematic state dynamics291

follow a first-order Markov chain, meaning that the state Xt only depends292

2It should be noted that the normalization constant Wλ =∫∑
k hk=1

exp(−λdB(h,hn))dh can be exactly computed only for histograms with

dimension lower than 3. In practice Wλ is approximated using Monte Carlo integration.
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on state Xt−1. Secondly, the person locations do not influence each other’s293

dynamics, meaning that there is one first-order Markov chain for each person.294

Formally, this can be written as:295

p(Xt|X1:t−1, e1:t) = p(Xt|Xt−1, et) =
N∏
n=1

p(Xtn|Xt−1n, etn). (9)

The immediate consequence is that the posterior distribution computes:296

p(Xt|o1:t−1, e1:t) =

∫ ( N∏
n=1

p(Xtn|xt−1n, etn)

)
p(xt−1|o1:t−1, e1:t−1)dxt−1.

(10)
For the model to be complete, p(Xtn|Xt−1,n, etn) needs to be defined. The297

temporal evolution of the kinematic state Xtn is defined as:298

p(Xtn = xtn|Xt−1,n = xt−1,n, etn) = u(xtn)1−etng(xtn; Dxt−1,n,Λn)etn , (11)

where u(xtn) is a uniform distribution over the motion state space, g is a
Gaussian probability density function, D represents the dynamics transition
operator, and Λn is a covariance matrix accounting for uncertainties on the
state dynamics. The transition operator is defined as:

D =

 I4×4
I2×2
02×2

02×4 I2×2

 =


1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

In other words, the dynamics of an existing person n is either follows a299

Gaussian with mean vector DXt−1,n and covariance matrix Λn, or a uniform300

distribution if person n does not exist. The complete set of parameters of301

the proposed model is denoted with Θ =
(
{Σi}Ii=1, {Λn}Nn=1,A1:t

)
, with302

At = {aitn}
N,I
n=0,i=1.303

4. Variational Bayesian Inference304

Because of the combinatorial nature of the observation-to-person assign-
ment problem, a direct optimization of the filtering distribution (2) with
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respect to the hidden variables is intractable. We propose to overcome this
problem via a variational Bayesian inference method. The principle of this
family of methods is to approximate the intractable filtering distribution
p(Zt,Xt|o1:t, e1:t) by a separable distribution, e.g. q(Zt)

∏N
n=0 q(Xtn). Ac-

cording to the variational Bayesian formulation [22, 23], given the observa-
tions and the parameters at the previous iteration Θ◦, the optimal approxi-
mation has the following general expression:

log q(Zt) = Eq(Xt) {log p(Zt,Xt|o1:t, e1:t,Θ
◦)} , (12)

log q(Xtn) = Eq(Zt)
∏

m 6=n q(Xtm) {log p(Zt,Xt|o1:t, e1:t,Θ
◦)} . (13)

In our particular case, when these two equations are put together with the
probabilistic model defined in (3), (7) and (9), the expression of q(Zt) fac-
torizes further into:

log q(Zi
tk) = Eq(Xt)

{
log p(Zi

tk,Xt|o1:t, e1:t,Θ
◦)
}
, (14)

Note that this equation leads to a finer factorization that the one we imposed.305

This behavior is typical of variational Bayes methods in which a very mild306

separability assumption can lead to a much finer factorization when combined307

with priors over hidden states and latent variables, i.e. (3), (7) and (9). The308

final factorization writes:309

p(Zt,Xt|o1:t, e1:t) ≈
I∏
i=1

Ki
t∏

k=0

q(Zi
tk)

N∏
n=0

q(Xtn). (15)

Once the posterior distribution over the hidden variables is computed (see310

below), the optimal parameters are estimated using Θ̂ = arg maxΘ J(Θ,Θ◦)311

with J defined as:312

J(Θ,Θ◦) = Eq(Zt,Xt) {log p(Zt,Xt,o1:t|e1:t,Θ,Θ◦)} . (16)

To summarize, the proposed solution for multi-person tracking is an on-313

line variational EM algorithm. Indeed, the factorization (15) leads to a vari-314

ational EM in which the E-step consists of computing (14) and (13) and the315

M-step consists of maximizing the expected complete-data log-likelihood (16)316

with respect to the parameters. However, as is detailed below, for stability317

reasons the covariance matrices are not estimated with the variational infer-318

ence framework, but set to a fixed value. The expectation and maximization319

steps of the algorithm are now detailed.320
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4.1. E-Z-Step321

The estimation of q(Zi
tk) is carried out by developing the expectation322

(14). More derivation details can be found in Appendix A.2, which yields323

the following formula:324

q(Zi
tk = n) = αitkn, (17)

where325

αitkn =
etnε

i
tkna

i
tn∑N

m=0 etmε
i
tkma

i
tn

, (18)

and εitkn is defined as:326

εitkn =

{
u(yitk)u(hitk) n = 0,

g(yitk,P
iµtn,Σ

i)e
− 1

2
Tr
(
Pi>(Σi)

−1
PiΓtn

)
b(hitk; hn) n 6= 0,

(19)

where Tr(·) is the trace operator and µtn and Γtn are defined by (21) and (22)327

below. Intuitively, this approximation shows that the assignment of an ob-328

servation to a person is based on spatial proximity between the observation329

localization and the person localization, and the similarity between the ob-330

servation’s appearance and the person’s reference appearance.331

4.2. E-X-Step332

The estimation of q(Xtn) is derived from (13). Similarly to the previ-333

ous posterior distribution, the mathematical derivations are provided in Ap-334

pendix A.3, and boil down to the following formula:335

q(Xtn) = u(Xtn)1−etng(Xtn;µtn,Γtn)etn , (20)

where the mean vector µtn and the covariance matrix Γtn are given by

Γtn =
( I∑
i=1

Ki
t∑

k=0

αitkn

(
Pi> (Σi

)−1
Pi
)

+ (DΓt−1,nD
> + Λn)−1

)−1
(21)

µtn = Γtn

( I∑
i=1

Ki
t∑

k=0

αitknP
i> (Σi

)−1
yitk + (DΓt−1,nD

> + Λn)−1Dµt−1,n

)
.

(22)

We note that the variational approximation of the kinematic-state distribu-336

tion reminds the Kalman filter solution of a linear dynamical system with337

mainly one difference: in our solution (21) and (22), the mean vectors and338

covariance matrices are computed with the observations weighted by αitkn339

(see (21) and (22)).340
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4.3. M-step341

Once the posterior distribution of the hidden variables is estimated, the342

optimal parameter values can be estimated via maximization of J defined343

in (16). The M-step allows to estimate the model parameter.344

Regarding the parameters of the a priori observation-to-object assignment345

At we compute:346

J(aitn) =

Ki
t∑

k=1

etnα
i
tkn log(etna

i
tn) s.t.

N∑
n=0

etna
i
tn = 1, (23)

and trivially obtain:347

aitn =
etn
∑Ki

t
k=1 α

i
tkn∑N

m=0 etm
∑Ki

t
k=1 α

i
tkm

. (24)

The M-Step for observation covariances corresponds to the estimation of
Σi. This is done by maximizing

J(Σi) =

Ki
t∑

k=1

N∑
n=1

etnα
i
tkn log(yitk,P

iXtn,Σ
i)

with respect to Σi. Differentiating J(Σi) with respect to Σi and equating to348

zero gives:349

Σi =
1

Ki
tN

Ki
t∑

k=1

N∑
n=1

etnα
i
tkn

(
PiΓtnP

i> + (yitk −Piµtn)(yitk −Piµtn)>
)

(25)

The M-Step for kinematic state dynamics covariances corresponds to the
estimation of Λn for a fixed n. This done by maximizing cost function

J(Λn) = Eq(Xtn|etn)[log g(Xtn; Dµt−1n,DΓtnD
> + Λn)etn)].

Equating differential of the cost J(Λn) to zeros gives:350

Λn = DΓt−1nD
> + Γtn + (µtn −Dµt−1,n)(µtn −Dµt−1,n)> (26)

It is worth noticing that, in the current filtering formalism, the formulas351

for Σi and Λn are instantaneous, i.e., they are estimated only from the352
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observations at time t. The information at time t is usually insufficient to353

obtain stable values for these matrices. Even if estimating Σi and Λn is354

suitable in a parameter learning scenario where the tracks are provided, we355

noticed that in practical tracking scenarios, where the tracks are unknown,356

this does not yield stable results. Suitable priors on the temporal dynamics of357

the covariance parameters are required. Therefore, in this paper we assume358

that the observation and dynamical model covariance matrices are fixed.359

5. Person-Birth and Person-Visibility Processes360

Tracking a time-varying number of targets requires procedures to cre-361

ate tracks when new targets enter the scene and to delete tracks when362

corresponding targets leave the visual scene. In this paper, we propose a363

statistical-test based birth process that creates new tracks and a hidden364

Markov model (HMM) based visibility process that handles disappearing tar-365

gets. Until here, we assumed that the existence variables etn were given.In366

this section we present the inference modelfor the existence variable based367

on the stochastic birth-process.368

5.1. Birth Process369

The principle of the person birth process is to search for consistent tra-370

jectories in the history of observations associated to clutter. Intuitively, two371

hypotheses “the considered observation sequence is generated by a person372

not being tracked” and “the considered observation sequence is generated by373

clutter” are confronted.374

The model of “the considered observation sequence is generated by a
person not being tracked” hypothesis is based on the observations and dy-
namic models defined in (5) and (11). If there is a not-yet-tracked per-
son n generating the considered observation sequence {yt−L,kL , . . . ,yt,k0},3
then the observation likelihood is p(yt−l,kl |xt−l,n) = g(yt−l,kl ; Pxt−l,n,Σ) and
the person trajectory is governed by the dynamical model p(xt,n|xt−1,n) =
g(xt,n; Dxt−1,n,Λn). Since there is no prior knowledge about the starting
point of the track, we assume a “flat” Gaussian distribution over xt−L,n,
namely pb(xt−L,n) = g(xt−L,n; mb,Γb), which is approximatively equivalent

3In practice we considered L = 2, however, derivations are valid for arbitrary values of
L.
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to a uniform distribution over the image. Consequently, the joint observa-
tion distribution writes:

τ0 = p(yt,k0 , . . . ,yt−L,kL)

=

∫
p(yt,k0 , . . . ,yt−L,kL ,xt:t−L,n)dxt:t−L,n

=

∫ L∏
l=0

p(yt,kl |xt−l,n)×
L−1∏
l=0

p(xt−l,n|xt−l−1,n)× pb(xt−2,n)dxt:t−L,n, (27)

which can be seen as the marginal of a multivariate Gaussian distribution.375

Therefore, the joint observation distribution p(yt,k0 ,yt−1,k1 , . . . ,yt−2,kL) is376

also Gaussian and can be explicitly computed.377

The model of “the considered observation sequence is generated by clut-378

ter” hypothesis is based on the observation model given in (5). When the379

considered observation sequence {yt,k0 , . . . ,yt−L,kL} is generated by clutter,380

observations are independent and identically uniformly distributed. In this381

case, the joint observation likelihood is382

τ1 = p(yt,k0 , . . . ,yt−L,kL) =
L∏
l=0

u(yt−l,kl). (28)

Finally, our birth process is as follows: for all yt,k0 such that τ0 > τ1, a new383

person is added by setting etn = 1, q(xt,n;µt,n,Γt,n) with µt,n = [y>t,k0 ,0
>
2 ]>,384

and Γtn is set to the value of a birth covariance matrix (see (20)). Also, the385

reference appearance model for the new person is defined as ht,n = ht,k0 .386

5.2. Person-Visibility Process387

A tracked person is said to be visible at time t whenever there are ob-388

servations associated to that person, otherwise the person is considered not389

visible. Instead of deleting tracks, as classical for death processes, our model390

labels tracks without associated observations as sleeping. In this way, we keep391

the possibility to awake such sleeping tracks when their reference appearance392

model highly matches an observed appearance.393

We denote the n-th person visibility (binary) variable by Vtn, meaning394

that the person is visible at time t if Vtn = 1 and 0 otherwise. We assume the395

existence of a transition model for the hidden visibility variable Vtn. More396

precisely, the visibility state temporal evolution is governed by the transition397
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matrix, p(Vtn = j|Vt−1,n = i) = π
δij
v (1− πv)1−δij , where πv is the probability398

to remain in the same state. To enforce temporal smoothness, the probability399

to remain in the same state is taken higher than the probability to switch to400

another state.401

The goal now is to estimate the visibility of all the persons. For this
purpose we define the visibility observations as νtn = etn

∑I
i=1 a

i
tn, being 0

when no observation is associated to person n. In practice, we need to filter
the visibility state variables Vtn using the visibility observations νtn. In other
words, we need to estimate the filtering distribution p(Vtn|ν1:tn, e1:tn) which
can be written as:

p(Vtn = vtn|ν1:t, e1:tn) =

p(νtn|vtn, etn)
∑

vt−1,n
p(vtn|vt−1,n)p(vt−1,n|ν1:t−1,n, e1:t−1)

p(νtn|ν1:t−1,n, e1:t)
, (29)

where the denominator corresponds to integrating the numerator over vtn. In402

order to fully specify the model, we define the visibility observation likelihood403

as:404

p(νtn|vtn, etn) = (exp(−λνtn))vtn(1− exp(−λνtn))1−vtn (30)

Intuitively, when νtn is high, the likelihood is large if vtn = 1 (person is405

visible). The opposite behavior is found when νtn is small. Importantly,406

at each frame, because the visibility state is a binary variable, its filtering407

distribution can be straightforwardly computed.408

6. Experiments409

6.1. Evaluation Protocol410

We experimentally assess the performance of the proposed model using411

two datasets. The cocktail party dataset (CPD) is composed of two videos,412

CPD-2 and CPD-3, recorded with a close-view camera (see Figure 3(a)413

and 3(b)). Only people’s upper body is visible, and mutual occlusions hap-414

pen often. CPD-3 records 3 persons during 853 frames and CPD-2 records 2415

persons during 495 frames.416

The second dataset is constituted of four sequences classically used in417

computer vision to evaluate multi-person tracking methods [18, 19]. Two se-418

quences were selected from the MOT Challenge Dataset [39]:4 TUD-Stadmitte419

4http://motchallenge.net/
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(a) CPD-2 (b) CPD-3 (c) PETS09S2L1

(d) TUD-Stadtmitte (e) ParkingLot (f) TownCentre

Figure 3: Typical images extracted from the sequences used for tracking evaluation. Fig-
ures 3(a) and 3(b) are from the Cocktail-Party Dataset. Figures 3(c), 3(d), 3(e), 3(f)
display sample images from PETS09S2L1, TUD-Stadtmitte, ParkingLot, and TownCen-
tre which classically used in computer vision to evaluate multi-person tracking.

(9 persons, 179 frames) and PETS09-S2L1 (18 persons, 795 frames). The420

third sequence is the TownCentre sequence (231 persons, 4500 frames) recorded421

by the Oxford Active Vision Lab. The last one is ParkingLot (14 persons,422

749) recorded by the Center for Research in Computer Vision of University423

of Central Florida. TUD-Stadmitte records closely viewed full body pedes-424

trians. PETS09-S2L1 and ParkingLot features a dozen of far-viewed full425

body pedestrians. TownCentre captures a very large number of far viewed426

pedestrians. This evaluation dataset is diverse and large (more than 6000427

frames) enough to give a reliable assessment of the multi-person tracking428

performance measures. Figure 3 shows typical views of all the sequences.429

Because multi-person tracking intrinsically implies track creation, dele-430

tion, target identity maintenance, and localization, evaluating multi-person431

tracking models is a non-trivial task. Many metrics have been proposed,432

see [40, 41, 42, 43]. In this paper, for the sake of completeness we use several433

of them split into two groups.434
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The first set of metrics follow the widely used CLEAR multi-person435

tracking evaluation metrics [42] which are commonly used to evaluate multi-436

target tracking where targets’ identities are jointly estimated together with437

their kinematic states. On the one side the multi-object tracking accuracy438

(MOTA) combines false positives (FP), missed targets (FN), and identity439

switches (ID). On the other side, the multi-object tracking precision (MOTP)440

measures the alignment of the tracker output bounding box with the ground441

truth. We also provide tracking precision (Pr) and recall (Rc).442

The second group of metrics is specifically designed for multi-target track-443

ing models that do not estimate the targets’ identities, such as the PHD filter.444

These metrics compute set distances between the ground truth set of objects445

present in the scene and the set of objects estimated by the tracker [40].446

The metrics are the Hausdorff metric, the optimal mass transfer (OMAT)447

metric, and the optimal sub-pattern assignment (OSPA) metric. We will448

use these metrics to compare the tracking results achieved by our variational449

tracker to the results achieved by the PHD filter which does not infer iden-450

tities [44].451

The computational cost of the proposed model is mainly due the the ob-452

servation extraction, namely the person detection. This process is known in453

computer vision to be computationally intensive. However, there are pedes-454

trian detectors that achieve real time performances [45]. The VEM part of455

the tracking model, which involves only inversion of 6 by 6 matrices, is com-456

putationally efficient and can be made real time. It converges in less than 10457

steps.458

6.2. Validation on the Cocktail Party Dataset459

In the cocktail party dataset our model exploits upper body detections460

obtained using [25] and face detections obtained using [26]. Therefore, we461

have two types of observations, upper body u and face f. The hidden state462

corresponds to the position and velocity of the upper body. The observa-463

tion operator Pu (see section 3.2.1) for the upper body observations simply464

removes the velocity components of the hidden state. The observation oper-465

ator Pf for the face observations combines a projection removing the veloc-466

ity components and an affine mapping (scaling and translation) transform-467

ing face localization bounding boxes into the the upper body localization468

bounding boxes. The appearance observations are concatenations of joint469

hue-saturation color histograms of the torso split into three different regions,470

plus the head region as shown in Fig.4(a).471
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(a) (b)

Figure 4: Region splitting for computing the color histograms: Fig.4(a) shows an example
with upper-body detection while Fig.4(b) shows an example of full body detection.

Sequence Features Rc Pr MOTA MOTP

CPD-2
u/uc 53.3/70.7 94.9/99.4 46.6/64.3 80.8/85.8
f/fc 89.8/90.1 94.6/94.6 75.7/76.0 76.6/76.7
fu/fuc 93.1/95.2 95.3/96.2 88.3/80.0 76.5/82.9

CPD-3
u/uc 93.6/93.6 94.4/99.6 91.6/91.8 85.0/86.8
f/fc 62.5/62.8 97.6/98.4 58.9/59.7 68.5/68.4
fu/fuc 91.0/92.6 99.4/99.7 88.3/90.1 76.5/82.9

Table 1: Evaluation of the proposed multi-person tracking method with different features
on the two sequences of the cocktail party dataset. All measures are in %.

Tables 1 and 2 show the performance of the model over the two sequences472

of the cocktail party dataset. While in Table 1 we evaluate the performance473

of our model under the first set of metrics, in Table 2, we compare the474

performance of our model to the one of the GMM PHD filter using the set-475

based metrics. Regarding the detectors, we evaluate the performance when476

using (i) upper body detectors, (ii) face detectors or (iii) both. For each of477

these three choices, we also compare when adding color histogram descriptors478

or when not using them. From now on, u and f denote the use of upper-479

body detectors and face detectors respectively, while c denotes the use of480

color histograms.481

Results in Table 1 show that for the sequence CPD-2, while Pr and482

MOTP are higher when using upper-body detections u/uc, Rc and MOTA483
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are higher when using face detections f/fc. One may think that the rep-484

resentation power of both detections may be complementary to each other.485

This is evidenced in the third row of Table 1, where both detectors are used486

and the performances are higher than in the first two rows, except for Pr487

and MOTP when using color. Regarding CPD-3, we clearly notice that the488

use of upper-body detections is much more advantageous than using the face489

detector. Importantly, even if the performance reported by the combina-490

tion of the two detectors does not significantly outperform the ones reported491

when using only the upper-body detectors, it exhibits significant gains when492

compared to using only face detectors. The use of color seems to be advanta-493

geous in most of the cases, independently of the sequence and the detections494

used. Summarizing, while the performance of the method using only face495

detections or upper-body detections seems to be sequence-dependent, there496

is a clear advantage of using the feature combinations. Indeed, the combina-497

tion seems to perform comparably to the best of the two detectors and much498

better to the worst. Therefore, the use of the combined detection appears499

to be the safest choice in the absence of any other information and therefore500

justifies developing a model able to handle observations coming from multiple501

detectors.502

Sequence Method-Features Hausdorff OMAT OSPA

CPD-2

VEM-u/uc 239.4/239.2 326.5/343.1 247.8/244.5
PHD-u 276.6 435.3 567
VEM-f/fc 116.3/115.5 96.3/96.1 110.9/108.0
PHD-f 124 102 185.8
VEM-fu/fuc 98.0/97.7 80.3/7 92.7/90.6
PHD-fu 95 80 168

CPD-3

VEM-u/uc 56.0/56.2 44.4/44.2 54.7/54.1
PHD-u 162.2 244.6 382.6
VEM-f/fc 184.2/185.5 200.8/201.3436 203.3/205.0
PHD-f 208 239.5 445.2
VEM-fu/fuc 66.3/67.4 52.7/52.8 68.5/68.0
PHD-fu 49 54.4 181

Table 2: Set metric based multi-person tracking performance measures of the proposed
VEM and of the GMM PHD filter [44] on the the cocktail party dataset.
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(a) CPD-2 (b) CPD-3

Figure 5: Histogram of absolute errors about the estimation of the number of people
present in the visual scene over the Cocktail Party Dataset.

Table 2 reports a comparison of the proposed VEM model with the PHD503

filter for different features under the set metrics over the two sequences of the504

cocktail party dataset. We first observe that the behavior described from the505

results of Table 1 is also observed here, for a different group of measures and506

also for the PHD filter. Absolutely, while the use of the face or of the upper-507

body detections may be slightly more advantageous than the combination of508

detectors, this is sequence- and measure-dependent. However, the gain of the509

combination over the less reliable detector is very large, thus justifying the510

multiple-detector strategy when the applicative scenario allows for it and no511

other information about the sequence is available. The second observations512

is that the proposed VEM outperforms the PHD filter almost everywhere513

(i.e. except for CDP-3 with fu/fuc under the Hausdorff measure). This514

systematic trend demonstrates the potential of the proposed method from515

an experimental point of view. One possible explanation maybe that the516

variational tracker exploits additional information as it jointly estimates the517

target kinematic states together with their identities.518

Figure 5 gives the histograms of the number of persons estimation ab-519

solute errors made by the variational tracking model. These results shows520

that for over the Cocktail Party Dataset, the number of people present in521

the visual scene for in a given time frame are in general correctly estimated.522

This shows that birth and the visibility processes play their role in creating523

tracks when new people enter the scene, and when they are occluded or leave524

23



Figure 6: Sample tracking results on CPD-3. The green bounding boxes represent the
face detections and the yellow bounding boxes represent the upper body detections. Im-
portantly, the red bounding boxes display the tracking results.

the scene. More than 80% of the time, the correct number of people is cor-525

rectly estimated. It has to be noticed that errors are slightly higher for the526

sequence involving three person than for the sequence involving two persons.527

To give a qualitative flavor to the tracking performance, Figure 9 gives528

sample results achieved by the proposed model (VEM-fuc) on CPD-3. These529

images show that the model is able to correctly initialize new tracks, iden-530

tify occluded people as no longer visible, and recover their identities after531

occlusion. Tracking results are provided as supplementary material.532

Figure 7 gives the estimated targets visibility probabilities (see Section533

5.2) for sequence CPD-3 with sample tracking images given in Figure 6. The534

person visibility show that tracking for person 1 and 2 starts at the beginning535

of the sequence, and person 3 arrives at frame 600. Also, person 1 is occluded536

between frames 400 and 450 (see fourth image in the first row, and first image537

in the second row of Figure 6).538

6.3. Evaluation on classical computer vision video sequences539

In this tracking situation, we model a single person’s kinematic state as540

the full body bounding box and its velocity. In this case, the observation op-541

erator P simply removes the velocity information, keeping only the bounding542

box’ position and size. The appearance observations are the concatenation543

of the joint HS histograms of the head, torso and legs areas (see Figure 4(b)).544

We evaluate our model using only body localization observations (b) and545

jointly using body localization and color appearance observations (bc). Ta-546
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Figure 7: Estimated visibility probabilities for tracked persons in sequence CPD-3. Every
row displays the corresponding targets visibility probabilities for every time frame. Yellow
color represents very high probability (close to 1), and blue color represents very low
probabilities.

Sequence Method-Features Hausdorff OMAT OSPA

TUD-Stadtmitte
VEM-b/bc 150.4/125.9 197.5/184.9 483.2/482.4
PHD-b 184.7 119 676

PETS09S2L1
VEM-b/bc 52.1/50.9 72.6/40.8 117.0/110.1
PHD-b 70 44 163

TownCentre
VEM-b/bc 420./391.2 205.4/177.5 350.0 /335.2
PHD-b 430.5 173.8 364.9

ParkingLot
VEM-b/bc 95.0/90.5 87.9/83.9 210.8/203.4
PHD-b 169 94.0 415

Table 3: Set metric based multi-person tracking Performance measures on the sequences
the four sequences PETS09S2L1, TownCentre, ParkingLot,and TUD-Stadtmitte.

ble 3 compare the proposed variational model to the PHD filter using set547

based distance performance metrics. As for the cocktail party dataset, in548

general, these results show that the variational tracker outperforms the PHD549

filter.550

In addition, we also compare the proposed model to two tracking models,551

proposed by Milan et al in [18] and by Bae and Yoon in [31]. Importantly, the552

direct comparison of our model to these two state-of-the-art methods must553

be done with care. Indeed, while the proposed VEM uses only causal (past)554

information, these two methods use both past and future detections. In other555

words, while ours is a filtering, [18, 31] are smoothing methods. Therefore,556

we expect these two models to outperform the proposed one. However, the557

main prominent advantage of filtering methods over smoothing methods,558

and therefore of the proposed VEM over these two methods, is that while559
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Sequence Method Rc Pr MOTA MOTP

TUD-Stadmitte
VEM-b/bc 72.2/70.9 81.7/82.5 54.8/53.5 65.4/65.1
[18] 84.7 86.7 71.5 65.5

PETS09-S2L1
VEM-b/bc 90.1/90.2 86.2/87.6 74.9/76.7 71.8/71.8
[18] 92.4 98.4 90.6 80.2
[31] - - 83 69.5

TownCentre VEM-b/bc 88.1/90.1 71.5/72.7 72.7/70.9 74.9/76.1

ParkingLot VEM-b/bc 80.3/78.3 85.2/87.5 73.1/74 70.8/71.7

Table 4: Performance measures on the sequences of the second dataset. Comparison with
[18, 31] must be done with care since both are smoothing methods and therefore use more
information than the proposed VEM.

smoothing methods are inherently unsuitable for on-line processing, filtering560

methods are naturally appropriate for on-line task, since they only use causal561

information.562

Table 4 reports the performance of these methods on four sequences clas-563

sically used in computer vision to evaluate multi-target trackers. In this564

table, results over TUD-Stadmitte show similar performances for our model565

using or not appearance information. Therefore, color information is not566

very informative in this sequence. In PETS09-S2-L1, our model using color567

achieves better MOTA measure, precision, and recall, showing the benefit568

of integrating color into the model. As expected, Milan et al and Bae and569

Yoon, outperform the proposed model. However, the non-causal nature of570

their method makes them unsuitable for on-line tracking tasks, where the571

observations must be processed when received, and not before.572

Figure 8 gives the histograms of the errors about the number of people573

present in the visual scene for the four sequences ParkingLot, TownCentre,574

PETS09-S2L1, TUD-Stadtmitte. These results show that, the four sequences575

are more challenging than the Cocktail Party Dataset (see figure 5). Among576

the four video sequences, TUD-Stadtmitte is the one where variational track-577

ing model is making the estimated number of people is the less consistent.578

This can be explained by the quality of the observations (detections) over579

this sequence. For the PETS, and the ParkingLot dataset which involve580

about 15 persons, about 70% of the time the proposed tracking model is581

estimating the number of people in the scene with an error below 2 persons.582
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(a) PETS09-S2L1 (b) TownCentre

(c) ParkingLot (d) TUD-Stadtmitte

Figure 8: Histogram of errors about the estimation of the number of people present in the
visual scene over ParkingLot, TownCentre, PETS09-S2L1, TUD-Stadtmitte.

For the TownCentre sequence which involves 231 persons over 4500 frames,583

over 70% of the time, the error made by the variational tracker is below 7584

persons. This shows that, even in challenging situations involving occlusions585

due to crowd, the birth and the visibility process play their role.586

Figure 9 presents sample results for the PET09-S2L1 sequence. In ad-587

dition, videos presenting the results on the second dataset are provided as588

supplementary material. These results show temporally consistent tracks.589

Occasionally, person identity switches may occur when two people cross. Re-590

markably, because the proposed tracking model is allowed to reuse the iden-591

tity of persons visible in the past, people re-entering the scene after having592

left, will be recognized the the previously used track will be awaken.593
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Figure 9: Tracking results on PETS09-S2L1. Green boxes represent observations and red
bounding boxes represent tracking outputs associated with person identities. Green and
red bounding boxes may overlap.
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7. Conclusions594

We presented an on-line variational Bayesian model to track a time-595

varying number of persons from cluttered multiple visual observations. Up596

to our knowledge, this is the first variational Bayesian model for tracking597

multiple persons, or more generally, multiple targets. We proposed birth598

and visibility processes to handle persons that are entering and leaving the599

visual field. The proposed model is evaluated with two datasets showing600

competitive results with respect to state of the art multi-person tracking601

models. Remarkably, even if in the conducted experiments we model the vi-602

sual appearance with color histograms, our framework is versatile enough to603

accommodate other visual cues such as texture, feature descriptors or motion604

cues.605

In the future we plan to consider the integration of more sophisticated606

birth processes than the one considered in this paper, e.g. [46]. We also607

plan to extend the visual tracker to incorporate auditory cues. For this608

purpose, we plan to jointly track the kinematic states and the speaking status609

(active/passive) of each tracked person. The framework proposed in this610

paper allows to exploit audio features, e.g. voice activity detection and audio-611

source localization as observations. When using audio information, robust612

voice descriptors (the acoustic equivalent of visual appearance) and their613

blending with the tracking model will be investigated. We also plan to extend614

the proposed formalism to a moving camera such that its kinematic state is615

tracked as well. This case is of particular interest in applications such as616

pedestrian tracking for self-driving cars or for human-robot interaction.617

Appendix A. Derivation of the Variational Formulation618

Appendix A.1. Filtering Distribution Approximation619

The goal of this section is to derive an approximation of the hidden-state620

filtering distribution p(Zt,Xt|o1:t, e1:t), given the variational approximating621

distribution q(Zt−1,Xt−1) at t−1. Using Bayes rule, the filtering distribution622

can be written as623

p(Zt,Xt|o1:t, e1:t) =
p(ot|Zt,Xt, et)p(Zt,Xt|o1:t−1, e1:t)

p(ot|o1:t−1, e1:t)
. (A.1)

It is composed of three terms, the likelihood p(ot|Zt,Xt, et), the predictive624

distribution p(Zt,Xt|o1:t−1, e1:t), and the normalization factor p(ot|o1:t−1, e1:t)625
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which is independent of the hidden variables. The likelihood can be expanded626

as:627

p(ot|Zt,Xt, et) =
I∏
i=1

∏
k≤Ki

t

N∏
n=0

p(otk|Ztk = n,Xt, et)
δn(Zi

tk) (A.2)

where δn is the Dirac delta function, and p(otk|Ztk = n,Xt, et) is the indi-628

vidual observation likelihood defined in (5) and (6).629

The predictive distribution factorizes as

p(Zt,Xt|o1:t−1, e1:t) = p(Zt|et)p(Xt|o1:t−1, e1:t).

Exploiting its multinomial nature, the assignment variable distribution p(Zt|et)630

can be fully expanded as:631

p(Zt|et) =
I∏
i=1

∏
k≤Ki

t

N∏
n=0

p(Zi
tk = n|et)δn(Z

i
tk). (A.3)

Using the motion state dynamics definition p(xtn|xt−1n, etn) the previous
time motion state filtering distribution variational approximation q(xt−1n|et−1) =
p(xt−1n|o1:t−1, e1:t−1) defined in (20), motion state predictive distribution
p(Xt = xt|o1:t−1, e1:t) can approximated by

p(Xt = xt|o1:t−1, e1:t)

=

∫
p(xt|xt−1, et)p(xt−1|o1:t−1, e1:t−1)dxt−1

=

∫ ( N∏
n=1

p(xtn|xt−1n, etn)

)
p(xt−1|o1:t−1, e1:t−1)dxt−1

≈
∫ N∏

n=1

p(xtn|xt−1n, etn)q(xt−1n|et−1n)dxt−1,1...dxt−1,n

≈
N∏
n=1

u(xtn)1−etng(xtn,Dµt−1,n,DΓtnD
> + Λn)etn (A.4)

where during the derivation, the filtering distribution of the kinematic state632

at time t−1 is replaced by its variational approximation p(xt−1|o1:t−1, e1:t−1) =633 ∏N
n=1 q(xt−1n|et−1n).634

Equations (A.2), (A.3), and (A.4) define the numerator of the tracking635

filtering distribution (A.1). The logarithm of this filtering distribution is636

used by the proposed variational EM algorithm.637
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Appendix A.2. Derivation of the E-Z-Step638

The E-Z-step corresponds to the estimation of q(Zi
tk|et) given by (14)

which, from the log of the filtering distribution, can be written as:

logq(Zi
tk|et) =

N∑
n=0

δn(Zi
tk)Eq(Xtn|et)[log

(
p(yitk,h

i
tk|Zi

tk = n,Xt, et)p(Z
i
tk = n|et)

)
] + C,

(A.5)

where C gathers terms that are constant with respect to the variable of
interest, Zi

tk in this case. By substituting p(yitk,h
i
tk|Zi

tk = n,Xt, et), and
p(Zi

tk = n|et) with their expressions (5), (6), and (8), by introducing the
notations

εitk0 = u(yitk)u(hitk)

εitkn = g(yitk,Pµtn,Σ
i) exp(−1

2
Tr(P>Σi−1PΓtn))b(hitk,hn)

and after some algebraic derivations, the distribution of interest can be writ-639

ten as the following multinomial distribution640

q(Zi
tk = n|et) = αitkn =

etnε
i
tkn∑N

m=0 etmε
i
tkm

(A.6)

Appendix A.3. Derivation of the E-X-Step641

The E-step for the motion state variables consists in the estimation of
q(Xtn|etn) using relation log q(Xtn|etn) = Eq(Zt,Xt/Xtn|et)[log p(Zt,Xt|o1:t, e1:t)]
which can be expanded as

log q(Xtn|et) =
I∑
i=1

Ki
t∑

k=0

Eq(Zi
tk|et)[δn(Zi

tk)] log g(yitk; PXtn,Σ
i)etn

+ log(u(Xtn)1−etng(Xtn; Dµt−1n,DΓtnD
> + Λn)etn) + C,

where, as above, C gathers constant terms. After some algebraic derivation642

one obtains q(Xtn|etn) = u(Xtn)1−etng(Xtn;µtn,Γtn)etn where the mean and643

covariance of the Gaussian distribution are given by (21) and by (22).644
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