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Abstract
Advanced computer vision and machine learning tech-

niques tried to automatically categorize the emotions
elicited by abstract paintings with limited success. Since
the annotation of the emotional content is highly resource-
consuming, datasets of abstract paintings are either con-
strained in size or partially annotated. Consequently, it is
natural to address the targeted task within a transductive
framework. Intuitively, the use of multi-label classification
techniques is desirable so to synergically exploit the rela-
tions between multiple latent variables, such as emotional
content, technique, author, etc. A very popular approach for
transductive multi-label recognition under linear classifica-
tion settings is matrix completion. In this study we introduce
non-linear matrix completion (NLMC), thus extending clas-
sical linear matrix completion techniques to the non-linear
case. Together with the theory grounding the model, we
propose an efficient optimization solver. As shown by our
extensive experimental validation on two publicly available
datasets, NLMC outperforms state-of-the-art methods when
recognizing emotions from abstract paintings.

1. Introduction

Beyond the automatic recognition of objective proper-
ties of images, in the past few years the computer vision re-
search community successfully invested large efforts in the
systematic characterization of subjective properties from vi-
sual cues. Image aesthetics [27, 45, 26], portrait beauty
assessment [31], meaningful texture selection [7], memo-
rability gaugement [13], emotion recognition [28] and cre-
ativity [30] are examples of such subjective vision-based
recognition tasks. Remarkably, researchers made a tremen-
dous progress in the automatic analysis of artworks target-
ing a diverse range of tasks, such as inferring paintings
styles [23], studying the influences between artists and art
movements [37], distinguishing authentic drawings from

Figure 1. Sample abstract paintings of the MART dataset: which
one does elicite in you a positive or a negative emotion?

imitations [12], automatically generating artworks [34] and
assessing evoked emotions [32, 46]. Figure 1 shows exam-
ples of abstract paintings from the MART dataset eliciting
positive and negative emotions: which one does what?1

The particular case of the automatic analysis of modern
art is exciting and challenging for the research community,
since the artist aims to convey strong and deep emotional
content to the observer. Indeed, artists immersed into the
abstract art movement tend to enhance the non-figurative
component and to express “only internal truths, renounc-
ing in consequence all consideration of external form” [18].
Subsequently, when analysing modern art paintings, it is of
utmost importance to study the relationship between visual
features (e.g. colour, shapes, textures) and evoked emotions.
In other words, it is crucial, and even more intriguing, to de-
sign vision-based learning models able to exploit this link
and to predict the emotion evoked by a particular paint-
ing. It is therefore unsurprising that there exist several at-
tempts to develop computational approaches for analysing
people’s emotional experience in reaction to modern art-
works [25, 44, 46, 33, 32]. Most of these studies rely on ad-
vanced computer vision and machine learning approaches
for emotionally categorising artworks [25, 46, 32] and for
inferring the parts of the paintings responsible for evoking
specific feelings [44]. Other studies investigate how the tex-

1 Theansweris.Filledboxescorrespondtonegativeemotions.
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Figure 2. Overview of the proposed non-linear matrix completion
framework for abstract painting analysis. Multiple and possibly
noisy labels (i.e. emotion and painting technique) are estimated
from the kernel matrix within a transductive setting, where both
the training and testing features (and thus the full kernel matrix)
are available at training time.

tual component (the title and the description of a painting)
influences the observer’s perceptual experience [33].

Importantly, the automatic analysis of modern artworks
is challenging for different reasons. First of all, annotat-
ing artworks with perceptual attributes is extremely time
consuming and requires the development of ad-hoc crowd-
sourcing platforms together with further post-processing to
account for inter-subject and painting variability. Even if
conducted under controlled settings, the outcome of this
process may lead to noisy and/or missing labels. Second,
while the textual component has shown to influence the ob-
server’s perception, the title and the description of paint-
ings are very heterogeneous, pithy and not always available.
Third, the emotional content is strongly related to other
characteristics of the painting, such as the painting tech-
nique, the artist or even the creation year. Consequently,
we believe that the automatic analysis of modern artworks
should be done (i) in a transductive setting so all the visual
features, including those of the unlabeled samples, are used
for learning and (ii) using multi-label methods able to ex-
ploit the relations between different latent variables.

Up to the authors’ knowledge one of the most success-
ful transductive multi-label learning frameworks is matrix
completion (MC) [9]. Previous works have proven MC
to be an effective approach for different computer vision
tasks such as multi-label image classification with noisy
labels [5], image retrieval and tagging [41, 6], manifold
correspondence finding [20] and head/body pose estima-
tion [2, 1]. Until now, matrix completion approaches were
tied to assume a linear classification model. In this paper we
introduce the first method for non-linear classification with
matrix completion and name it non-linear matrix comple-

tion (NLMC). Figure 2 shows an overview of the proposed
NLMC approach: multiple and possible noisy training la-
bels are used together with the full (training and testing)
kernel matrix to estimate the testing labels. Intuitively, we
extend the linear MC to non-linear kernels, where the im-
plicit kernel features may be of infinite dimension, provid-
ing all the necessary theoretical background. We show that
the problem can be cast into a finite-dimension optimiza-
tion problem, for which we only need the kernel matrices
(and not the features themselves). Finally, we report the
method’s performance with an extensive set of experiments
conducted on two publicly available datasets for emotion
recognition from abstract paintings.
Contributions. This paper has several contributions:

• Introducing the very first non-linear learning approach
within the well-known matrix completion philosophy
and its application to the emotion recognition problem
from abstract paintings (we provide all the necessary
theoretical background to support the formalization of
the method).

• Casting the learning problem using the implicit (po-
tentially infinite-dimensional) features into a non-
linear optimization problem for which only the (finite-
dimensional) kernel matrix is required, and not the im-
plicit features.

• Reporting an extensive experimental campaign on the
only two publicly available datasets for emotion recog-
nition from abstract paintings.2 In this regard, we com-
pare the accuracy in two tasks: emotion recognition
and joint painting technique and emotion recognition,
showing the advantage of the proposed approach over
state-of-the-art methods on transductive learning and
on emotion recognition from abstract paintings.

2. Related Work
In this section we discuss previous works related to (i)

visual learning models for emotional analysis of abstract
paintings and (ii) matrix completion.

2.1. Painting Emotion Recognition

Nowadays, there is an increasing research interest on
developing computational models for emotion analysis of
modern art paintings. Previous works investigated the role
of several visual features (e.g. color, shape and texture)
when predicting the emotion conveyed by the artworks to
the observers. Yanulevskaya et al. [43] proposed an emo-
tion categorization approach based on the aggregation of lo-
cal image statistics and Support Vector Machines (SVM).

2We are in private communication with the authors of [3], but the
dataset is still unavailable due to copyright issues.



Machajdik et al. [25] introduced a unified framework to
classify artworks emotionally combining low-level visual
features and high-level concepts from psychology and art
theory. In [44] a bag-of-visual-words model combined with
SVM was proposed to classify abstract paintings into those
eliciting positive or negative emotions. Moreover, a back-
projection technique was introduced to identify which parts
of the paintings evoke positive or negative emotions. Zhao
et al. [46] proposed an approach for emotional classifica-
tion of images where specific visual features were designed
according to art principles, trying to capture information
about balance, harmony, variety and movement. Amirshani
et al. [3] documented the research effort towards collecting
datasets of paintings with annotations based on human per-
ceptual scores. Sartori et al. [33] introduced a joint learning
framework for abstract painting emotion recognition which
integrates both visual and text information. To our knowl-
edge, no previous works have tackled the problem of emo-
tional categorization of modern art paintings considering a
multi-label transductive classification framework.

2.2. Matrix Completion

As discussed in the introduction, the recognition of emo-
tions elicited by abstract paintings would definitely benefit
from a transductive multi-label learning framework. While
several multi-label classification methods under a super-
vised setting with lots of training data have been devel-
oped, for instance [22, 21], research on transductive multi-
label classification has received much less attention. In-
deed, Kong et al. [19] proposed a method based on label
set propagation for small datasets, Hariharan et al. [10] in-
troduced a max-margin formulation for zero-shot learning
applications, Hueber et al. [11] derived a generative regres-
sor with missing data, and Goldberg et al. [9] studied the
matrix completion framework in depth.

This is the technical scope of the present paper, since
matrix completion is particularly advantageous when data
and labels are noisy or in the case of missing data. Previous
research studies in computer vision exploited matrix com-
pletion for several applications, such as multi-label image
classification [5, 24], image retrieval [41], facial analysis
[40, 35] and joint head and body pose estimation [2]. Other
works focused on developing algorithms to efficiently solve
the MC optimization problem [38, 42]. A recent study [17]
extended matrix completion to incorporate an underlying
graph structure inducing a weighted relationship between
the columns and the rows of the matrix. Importantly, pre-
vious works considered matrix completion only for linear
classification. The proposed non-linear matrix completion
is, up to our knowledge, the first approach for non-linear
multi-label classification in a transductive setting able to
deal with noisy or missing labels/features.

3. Emotion Analysis using NLMC
The main goal of this study is to analyse the emotional

experience of people looking at modern art. Intuitively, the
emotional experience is linked to other characteristics of
the paintings, such as the painting technique or the style.
Therefore, for the sake of completeness, we chose to ad-
dress this problem within a multi-label framework. Further-
more, given that the annotation cost of the perceived emo-
tion is considerably high, a transductive scenario seems to
be the most appropriate. Thus, we extract visual features
from m training paintings X0 = [x1, . . . ,xm] and from
n testing paintings X1 = [xm+1, . . . ,xp=m+n], xi ∈ Rl
∀i ∈ {1, . . . , p}, where l is the dimension of the feature
space. The multi-labels are denoted by yi ∈ Rk, and for the
sake of clarity we assume they are available for the training
set Y0 = [y1, . . . ,ym] while unknown for the testing set
Y1 = [ym+1, . . . ,yp], although (non-linear) matrix com-
pletion can naturally handle partially available labels. In
practice, being in a transductive setting means that visual
features of all (training and testing) samples are used at
training time. In the following, we first describe the features
extracted from the abstract paintings, to later on state the
non-linear matrix completion model and the optimisation
problem, and finally propose an efficient solver that leads to
the optimum labels.

3.1. Visual features for abstract paintings

We use the state-of-the-art color-based visual features re-
cently proposed in [32]. These color-based image features
are inspired from Itten’s understanding of the relevance of
colors and their combinations [14]. The complete descrip-
tion of the features can be found in [32], but we sketch the
three-stage pipeline used to extract them.

Firstly, we use the Color Naming Method (CNM) of [39]
to create a visual vocabulary inspired from 11 linguistic la-
bels, considered to be the ones human beings use to ex-
press colors. This color nomenclature has shown to be more
robust to photometric changes than previous approaches.
CNM allows us to map each of the pixels in a painting to
a new color value taking into account a small neighbor-
hood of the pixel. Once this has been done independently
per each artwork, the new pixel values of all paintings are
jointly clustered in the maximum number of possible col-
ors in Itten’s model (i.e. 180 [14]). After that all pixels
are quantized to the centroids obtained from the clustering
algorithm. In a second stage, the images quantized accord-
ingly to Itten’s color model are segmented using [8]. The
two main parameters of this method are the standard de-
viation of the Gaussian filter and the observation scale. We
used the same values as in [32] for both parameters, without
observing significant performance variations around this
working point. In a third stage, we use two color-based
features, namely: color co-occurrence features and patch-



based color-combination features. These features are des-
gined to capture different relations between colors: two-
color combinations, the amount of colors, the position of
colors and the distance between colors. A fully detailed de-
scription of the Itten-inspired features can be found in [32].

3.2. Non-Linear Matrix Completion

Recently, the computer vision community developed in-
teresting methods for classification in the framework of ma-
trix completion [9, 5, 2]. In all MC approaches, the joint
label-feature matrix is considered:[

Y0 Y1

X0 X1

]
∈ R(k+l)×(m+n). (1)

In previous MC studies the classifier taken under consid-
eration was linear, and the following assumption held:

[Y0 Y1] = W [X0 X1], (2)

with W ∈ Rk×l being the classifier’s parameters. One of
the promiment features of this formulation is that the clas-
sifier’s parameters are not explicitly computed and the un-
known labels are directly estimated. The classifier imposes
a linear dependency between the rows of the matrix. There-
fore, the matrix completion problem is usually cast into a
rank-minimization problem.

Up to the present, nobody considered non-linear classifi-
cation under the MC framework. In this study we present a
formal methodology together with an optimization method
so to combine the classification capabilities of the matrix
completion framework with the representation power of
non-linear kernels applied to the visual features so to ef-
ficiently estimate the evoked emotion of abstract paintings.

To this aim, we assume the data is mapped into a h-
dimensional space through an unknown feature mapping φ.
For this we define φi = φ(xi), and from them Φ0, and Φ1

analogously to X0 and X1. Importantly, (i) the dimension
of the new feature space is possibly infinite (h ≤ ∞), (ii) the
new features are unknown and (iii) only the kernel matrices,
that is K00 = Φ>0 Φ0 ∈ Rm×m, K01 = Φ>0 Φ1 ∈ Rm×n
and K11 = Φ>1 Φ1 ∈ Rn×n, are available. The new label-
feature matrix is defined as:

Z̃ =

[
Y0 Y1

Φ0 Φ1

]
. (3)

Given the linear relationship between the labels and the new
features [Y0 Y1] = W̃ [Φ0 Φ1], we seek for a low-rank
approximation of the matrix Z̃:

Z∗ = arg min
Z

rank(Z) s.t. PΩ(Z− Z̃) = 0, (4)

where PΩ has the effect of a binary mask over the set of all
features and training labels, ensuring that the testing visual
features Φ1 are also used at training time.

While the optimization problem in (4) is well-defined for
finite matrices, defining the rank of a matrix with an infinite
number of rows is not immediate. Lemma 1 in the supple-
mentary material proves that the rank operator is defined for
such matrices (under mild conditions), and subsequently (4)
is well-defined with at least one feasible solution: Z = Z̃.

Since minimizing the rank is an NP problem, classical
studies on matrix completion used the nuclear norm, that is
the sum of the singular values. Again Lemma 1 provides
the background to define the singular values (and therefore
the nuclear norm) of a matrix with infinite number of rows.
Very importantly, and this is the main theoretical result of
this study, Theorem 1 proves that the nuclear norm is the
tighest convex envelope of the rank (as with finite matrices)
and that the following problem is equivalent to (4):

Z∗ = arg min
Z
‖Z‖∗ s.t. PΩ(Z− Z̃) = 0. (5)

Furthermore, also inspired by [29], we impose the de-
composition Z = LQ>, where L ∈ R(k+h)×r and Q ∈
Rp×r, and therefore the optimization problem rewrites:

(L∗,Q∗) = arg min
L,Q
‖L‖2F + ‖Q‖2F

s.t. PΩ(LQ> − Z̃) = 0. (6)

Importantly, as noted in [29]–Lemma 5.1, the problems (5)
and (6) are equivalent for a sufficiently large value of r.

Finally, we impose an additional constraint in order to
avoid a persistent issue of matrix decomposition techniques
(non-negative matrix factorization is another example): the
scale ambiguity problem. Indeed, if the j-th column of L
and Q is multiplied/divided by the same scalar, the final
approximation does not change. This ambiguity induces
many identical local minima in the objective function, thus
confusing any optimization solver. Typically, one imposes
some kind of normalization on one of the matrices of the
decomposition. Without loss of generality, we chose to im-
pose that Q is orthogonal:3 Q>Q = Ir, where Ir is the
r × r identity matrix. The optimization problem rewrites:

(L∗,Q∗) = arg min
L,Q
‖L‖2F + ‖Q‖2F

s.t. PΩ(LQ> − Z̃) = 0 and Q>Q = Ir. (7)

3.3. Recognizing evoked emotions

In order to recognize the emotions evoked from the ab-
stract paintings, we need to solve the previous optimization
problem. For clarity purposes, we transfer the label-feature
(resp. the training-testing) structure into L (resp. Q):

L =

[
L0

L1

]
∈ Rk×r
∈ Rh×r , Q =

[
Q0

Q1

]
∈ Rm×r
∈ Rn×r . (8)

3 If Q = UDV is the SVD of Q we define L̃ = LV>D and Q̃ = U,
so that LQ> = L̃Q̃> and Q̃ is orthogonal.



Once the optimal solution is found, the unknown labels
(emotion and painting technique) are estimated using:

Y∗1 = L∗0(Q∗1)>, (9)

where ∗ denotes optimality.
In an ideal scenario, where the visual features and the

label annotations were noiseless and fully trustworthy, the
equality constrain PΩ(LQ> − Z̃) = 0 would be appro-
priate. In the current scenario, where annotations as well
as the extracted visual features may be noisy, relaxing the
original problem by means of a measure of how close are
estimations to the available observations is intuitively more
appropriate. Hence, the objective function rewrites:

F (Q0,Q1,L0,L1) := ‖Y0 − L0Q
>
0 ‖2F + ‖Φ0 − L1Q

>
0 ‖2F

+ ‖Φ1 − L1Q
>
1 ‖2F + λ(‖L0‖2F + ‖L1‖2F ), (10)

being λ a regularization parameter (we used ‖Q‖2F = r).
As it is often the case in kernel approaches, the features

cannot be explicitly computed. Consequently, the explicit
computation of L1 is also unfeasible. We solve this issue
by taking the derivative of the cost function with respect to
L1 and replace its optimal value into the cost function. Af-
ter this step, the feature matrices are not needed any more,
but only the kernel matrices. Since L1 can potentially have
an infinte number of rows, we cannot reason on the rules
of finite-dimensional calculus. The theoretical foundations
allowing us to take the derivative of a function with respect
to a matrix with an infinite number of rows lie in the field
of functional analysis and are detailed in the supplementary
material. We obtain the following result:

∂F

∂L1
=−2Φ0Q0+2L1Q

>
0 Q0−2Φ1Q1+2L1Q

>
1 Q1+2λL1,

and by canceling this derivative we obtain:

L∗1 = (Φ0Q0 + Φ1Q1)(λIr + Q>0 Q0 + Q>1 Q1)−1

=
1

λ+ 1
(Φ0Q0 + Φ1Q1), (11)

where we used the normalization of Q. By replacing L1

with its optimal value in the objective function we obtain:

F (Q0,Q1,L0) = −2Tr(Y>0 L0Q
>
0 ) + Tr(L>0 L0Q

>
0 Q0)

+ λTr(L>0 L0)− 1

λ+ 1
Tr(Q>KQ), (12)

where K = [Kij ]ij is the kernel matrix constructed from
the visual features, i.e. Kij = Φ>i Φj . We can also take the
(regular) derivative with respect to L0:

∂F

∂L0
= −2Y0Q0 + 2L0Q

>
0 Q0 + 2λL0 (13)

which cancels out when:

L∗0 = Y0Q0(Q>0 Q0 + λIr)
−1. (14)

By plugging back this value into F we obtain:

F (Q0,Q1) = −Tr(Q>0 Y>0 Y0Q0(Q>0 Q0 + λIr)
−1)

− 1

λ+ 1
Tr(Q>KQ). (15)

We reduced the original optimisation problem to:

(Q∗0,Q
∗
1) = arg min

Q0,Q1

F (Q0,Q1)

s.t. Q>0 Q0 + Q>1 Q1 = Ir, (16)

that can be solved with an interior-point algorithm [36, 4]
where the estimation of the Hessian is done with finite dif-
ferences and the iteration step is computed using conjugate
gradient. In that case, the precision of such solver increases
drastically if the gradient of the objective function is pro-
vided:

∂F

∂Q1
= − 2

1 + λ
(K01Q0 + K11Q1), (17)

∂F

∂Q0
= 2Q0

(
Qλ

0

)−1
Q>0 Y>0 Y0Q0

(
Qλ

0

)−1

−2Y>0 Y0Q0

(
Qλ

0

)−1− 2

1 + λ
(K00Q0 + K01Q1), (18)

where Qλ
0 = Q>0 Q0 + λIr. Once the optimal solution

(Q∗0,Q
∗
1) is found, we can compute L∗0 with (14) and es-

timate the emotions and painting style using (9).

4. Experimental Validation
We validate the proposed non-linear matrix completion

approach on single-label and multi-label classification. The
complete experimental validation consists on five different
tests: (i) the evaluation of the color-based features using
a standard classification method, (ii) the recognition of the
emotional experience of people observing abstract paintings
(as in [32] we aim to recognize if an abstract painting elicits
a positive or a negative feeling), (iii) the parameter sensitiv-
ity analysis of the proposed NLMC method on this task, (iv)
the ability of NLMC to jointly estimate the emotion elicited
and the painting technique (among Acrylic, Oil, Tempera
and Lithography) and (v) the ability of NLMC to do that
from only one example.

4.1. Datasets

In our experiments we used two publicly available4

datasets: MART and devArt. The main difference is the
4http://disi.unitn.it/˜sartori/datasets/

http://disi.unitn.it/~sartori/datasets/


Figure 3. Sample paintings from the MART dataset (top row) and
from the devArt dataset (bottom row).

artists’ background, since MART contains paintings by pro-
fessional artists and devArt consists on paintings by am-
ateur artists. Each dataset is composed by 500 images.
The annotation of the emotional perception was done us-
ing the relative score method in [32], which provides posi-
tive/negative labels from partial order relations that are an-
swers to the question: “Which painting in the pair looks
more positive to you?”.

The MART dataset [44] is a collection from the elec-
tronic archive of the Museum of Modern and Contemporary
Art of Trento and Rovereto (MART). The abstract paintings
were produced by almost 80 different professional artists
since the beginning of the 20th century until now. Among
the painters, there are famous artists like Kandinsky, Albers
or Veronesi. Importantly, these artists are known, not only
by their exceptional artworks, but also by their theoretical
studies on abstract art in terms of color, shapes or texture.
An extract of paintings from MART is shown in Figure 3
(top). The painting technique was annotated by an expert.

The devArt dataset is a collection of amateur abstract
paintings obtained from the “DeviantArt” online social net-
work5. DeviantArt is one of the largest online art com-
munities with more than 280 million artworks and 30
million registered users. We selected the 500 most fa-
vored artworks that were under the category Traditional
Art/Paintings/Abstract, from 406 different authors. A sam-
ple of the devArt dataset is shown in Figure 3 (bottom).

4.2. Results

The features. Abstract art theorists state that color is the
most important aspect for abstract painting emotion recog-
nition [14]. Our first experiment serves to find out weather
this is also true from a computational point of view. Figure 4
shows the 5-fold cross-validation average emotion recogni-
tion accuracy when a SVM classifier is fed with the color
combination features [32], the LAB visual words [44] and
CNN features [15]. Experimental results shows that the

5www.deviantart.com
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Figure 4. Evaluation of abstract painting emotion recognition for
different features.

Table 1. Average emotion recognition accuracy (in %) of all base-
line methods in both MART and devArt datasets.

Method MART devArt

TSVM [16] 69.2 70.0
LMC [6] 71.8 72.5

Lasso [32] 68.2 70.4
Group Lasso [32] 70.5 72.1

NLMC 72.8 76.1

color combination feature outperforms the two other alter-
native features. CNN seem not to be effective enough to
extract emotion information from the images. Therefore,
we only perform experiments with the color-based features.

Emotion Recognition. We compare the average emo-
tion recognition accuracy of the proposed non-linear ma-
trix completion (NLMC) method to four different base-
lines. On the one hand, to two traditional transductive
learning approaches namely: kernel transductive SVM
(TSVM [16]) and linear matrix completion (LMC e.g. [6]).
On the other hand, to two state-of-the-art methods for
emotion recognition from abstract paintings: Lasso and
Group Lasso, both evaluated in [32]. The decomposi-
tion size of NLMC and LMC was cross-validated on r ∈
{2, 3, 4, 5}, since no increase of performance was observed
for higher values of r. Similarly, for NLMC, LMC and
TSVM, the regularization parameter was cross-validated
on the set {10−5, . . . , 10−1}, and the radial basis func-
tion kernel (variance) parameter was cross-validated on
the set {0.01, 0.0316, 0.1, 0.316, 1.0, 3.16}. The regular-
ization parameters of Lasso and Group Lasso were cross-
validated in the range {0.1, 0.316, 1, 3.16, 10, 31.6, 100}
and {0.0001, 0.001, 0.01, 0.1, 1} respectively (since for
Group Lasso, the regularization parameter represents a
proportion of its estimated maximum value6). Results
in Table 1 are a 12-realization average with a 10-fold
cross-validation strategy. The entire software is available
at https://github.com/xavirema/nlmc.

6See the documentation of the publicly available software used for the
experiments: http://www.yelab.net/software/SLEP/

www.deviantart.com
https://github.com/xavirema/nlmc
http://www.yelab.net/software/SLEP/


Figure 5. Average emotion recognition accuracy with varying
training set size on the MART dataset.
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Figure 6. Sensitivity study of parameters of the proposed NLMC
method on the MART (left) and devArt (right) datasets.

First of all we observe that the proposed NLMC ap-
proach systematically outperforms all baselines in both
datasets. Very importantly, this behaviour is observed also
another set of experiments aiming to evaluate the perfor-
mance of the methods when reducing the size of the train-
ing set. Since the MART dataset is the most challenging
among the two, Figure 5 shows the average recognition ac-
curacy of the methods for different training set sizes. Sum-
marizing, NLMC outperforms, both the state-of-the-art on
the emotion recognition task and traditional transductive ap-
proaches widely used in the computer vision community.
This suggests that NLMC could be beneficial for other com-
puter vision tasks. Finally, Figure 7 shows some qualitative
results of the NLMC method on both datasets.

Parameter Sensitivity & Complexity Analysis. We
also report (see Figure 6) the parameter sensitivity anal-
ysis of the proposed NLMC method. The optimal work-
ing point of the method is at λ = 0.01, γ = 0.1 for the
MART dataset and at λ = 0.1, γ = 0.316 for the devArt
dataset. We notice from the two graphs that the two work-
ing points are in a fairly flat part of the surface, meaning
that the NLMC method is not very sensitive to variations
of the parameters around the optimal working point. In ad-

Table 2. Computational complexity (in s) of different methods on
the MART dataset (i.e. 400 training/100 testing paintings).

Method Training Testing

TSVM [16] 0.79
LMC [6] 2.82

Lasso [32] 0.03 0.001
Group Lasso [32] 4.21 0.002

NLMC 1.71

Table 3. Average multi-label recognition accuracy on the MART
dataset: emotion and painting technique.

Method Emotion Technique

LSP [19] 67.19 40.63
LMC [6] 68.75 34.69

NLMC 69.38 41.87

dition to evaluate the performance variation of the method
with the parameter values, we also compared its computa-
tional complexity. Table 2 shows elapsed time of the train-
ing and testing phases (joint in transductive approaches) on
the MART dataset with 400 training/100 testing paintings.
Experiments ran on a regular laptop with an Intel-i5 proces-
sor at 2.67 GHz. We remark that, even if NLMC is not the
fastest method, it is much faster than the two closest com-
petitors in terms of performance, namely: Group Lasso and
LMC. Regarding the convergence, we have experimentally
observed that the relative variation of the objective function
goe below 10−5 after 20 iterations of the algorithm.

Joint Emotion and Technique Recognition. One of the
prominent features of MC in general and NLMC in partic-
ular is that the model is naturally able to deal with multi-
ple label at once. Hence, we evaluate the performance of
the proposed method within a multi-label classification set-
ting addressing two tasks simultaneously: the recognition
of the emotion and of the painting technique. Since the
painting technique is not annotated in the devArt dataset,
this experiment is only conducted on the MART dataset.
Moreover, given that TSVM, Lasso and Group Lasso are
not multi-label classification techniques, we here compare
with the state-of-the-art transductive multi-label approach
in [19], called label set propagation (LSP). The neighbor-
hood size parameter of LSP was cross-validated in the range
{5, . . . , 12}. Finally, in order to guarantee a fair compari-
son with [19], we rebalanced the dataset, leading to a dataset
with 8 samples per combination of emotion and technique
label (eight combinations in total). Consequently, the re-
sults we report here are not directly comparable to the ones
in Table 1. Average accuracy results on both tasks are re-
ported in Table 3. Consistently with the findings in Table 1,
the proposed NLMC approach outperforms all baselines.



Table 4. Average multi-label one-shot recognition accuracy on the
MART dataset: emotion and painting technique.

Method Emotion Technique

LSP [19] 53.13 24.54
LMC [6] 60.27 32.81

NLMC 64.51 33.48

Importantly, up to the authors’ knowledge this is the first
study addressing the task of joint recognition of emotion
and painting technique from abstract paintings, thus setting
the baseline for future research.

One-shot Emotion and Technique Recognition. Nat-
urally, transductive learning approaches can be used in a
one-shot learning setting, meaning that the training set con-
sists on one sample per class. Hence, we explored the use
of NLMC in such application, thus trying to jointly esti-
mate the emotion and the painting technique from only one
annotated sample per label combination (eight samples in
total). Table 4 shows the results of our experiments com-
paring NLMC with LMC and LSP. Even if all methods ex-
perience an expected small drop in performance, it is clear
that NLMC outperforms LMC and LSP both for emotion
and technique recognition, consistently with the previous
experiments (i.e. Tables 1 and 3).

5. Conclusions
In this paper we address the task of recognizing the emo-

tion elicited by abstract paintings. Since annotating the
emotion of a painting is a highly resource-consuming task,
it is desirable to perform the learning in a transductive set-
ting. Intuitively, the emotion has complex interdependen-
cies with other characteristics of the painting, such as the
painting technique. Therefore we propose to address the
task with a new multi-label transductive classifier, named
non-linear matrix completion. This is the first work address-
ing matrix completion, which is inherently transductive and
multi-label, under the assumption of a non-linear classi-
fier. We derive the theoretical foundation required to set the
optimization problem and propose a solver that performs
the learning. In order to validate the approach, we con-
ducted experiments on two publicly available dataset and
addressed two tasks: emotion recognition and joint emo-
tion and painting technique recognition. Results show sys-
tematic improvement over state-of-the-art on transductive
single- and multi-label approaches as well as other super-
vised approaches previously used in emotion recognition of
abstract paintings. Future works will focus on extending the
proposed framework to handle missing features in order to
integrate other sources of information (e.g. text) useful for
emotional abstract painting analysis.

Figure 7. Sample results for abstract painting analysis. Top two
groups come from the MART dataset, while bottom two groups
from the devArt dataset. Left column corresponds to paintings
with positive feelings, while the right column corresponds to neg-
ative feelings. Paintings framed in purple corresponds to misclas-
sifications of the proposed NLMC method.
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6. Theoretical Foundations
6.1. The rank of a matrix with infinite rows

Lemma 1 The rank of Z ∈ Zp = {T ∈ RN×p, ‖T‖F <
∞} exists, is finite and not larger than p. Moreover, such a
matrix has p (non-negative) singular values.

Proof The proof has three steps: 1) prove that both the
row and column rank cannot exceed p, 2) sketch that these
two ranks coincide and therefore the rank operator is well
defined and 3) show that there p singular values.

1. The row rank and the column rank of Z cannot ex-
ceed p. On the one side, the rows are all p-dimensional
vectors and therefore they cannot span a space with di-
mensionality higher than p. On the other side, there
are only p columns, and therefore they cannot span a
space with dimensionality higher than p.

2. The row and column ranks coincide, and therefore we
can write rank(Z), and state 0 ≤ rank(Z) ≤ p. In-
deed, it is straightforward to extend the result for finite
matrices to any matrix in Zp.

3. Z has p singular values, that are, by definition, the
square root of the eigenvalues of the (finite) matrix
Z>Z. Since Z>Z is a symmetric non-negative definite
square matrix of size p, Z has exactly p non-negative
singular values.

6.2. The nuclear norm is the tighest convex envelope
of the rank also in Zp

Theorem 1 On the set ZMp = {Z ∈ RN×p, ‖Z‖F < M}
the tightest convex envelope of rank(Z) is g(Z) = 1

M ‖Z‖∗.

Proof The proof has two steps. First, we prove that the bi-
conjugate of a real-valued function in a Hilbert space (ZMp
is one) is the tighest convex envelope. After that, we prove
that the bi-conjugate of the rank is the nuclear norm.

We first recall the definition of the conjugate of a func-
tion:

Definition 1 LetH be a Hilbert space, with scalar product
denoted by 〈·, ·〉. Let f 6=∞minorized by an affine function
overH, then the conjugate of f is a function f∗ defined as:

f∗(s) := sup{〈s, x〉 − f(x), x ∈ domf}, s ∈ H. (19)

Intuitively, domf is the set of slopes of all affine functions
minorizing f over H. From this definition it is easy to see
that f∗ also satisfies the conjugability conditions. There-
fore we can consider the following object f∗∗, referred to
as the biconjugate of the function f . Importantly, the fol-
lowing lemma proves that the biconjugate of a function is
the tighest convex envelope of the function. In other words:

Lemma 2 For a given f satisfying the conjugability condi-
tions, f∗∗ is the pointwise supremum of all the affine func-
tions onH majorized by f .

Proof If Ωf ⊂ H×R denotes the set of pairs (y, r) defining
affine functions x 7→ 〈y, x〉 − r majorized by f , we have:

(y, r) ∈ Ωf ⇔ f(x) ≥ 〈y, x〉 − r ∀x ∈ H
⇔ r ≥ sup{〈y, x〉 − f(x), x ∈ H}
⇔ r ≥ f∗(y).

Then we obtain:

sup
(y,r)∈Ωf

〈y, x〉 − r = sup
(y,r)

{〈y, x〉 − r, y ∈ domf∗,−r ≤ −f∗(y)}

= sup
y
{〈y, x〉 − f∗(y), y ∈ domf∗}

= f∗∗(x),

as we wanted to prove.
The previous result corresponds to part of Theorem

X.1.3.5 of [2] extended to any Hilbert space and allows us
to write the biconjugate of a function as:

f∗∗(x) = sup
r,s
{〈y, x〉 − r, 〈y, z〉 − r ≤ f(z),∀z ∈ H}.

(20)
Therefore, the biconjugate of a function f is its tighest

convex envelope, and this concludes the first part of the
proof. In the second part of the proof, we shall see that
the biconjugate of the rank is the nuclear norm. First of all
we remark that both the rank and the nuclear norm are well
defined for matrices in ZMp as proven in Lemma 1 in the
main manuscript.

The proof of the second part follows step-by-step the
proof of Theorem 1 in [1], and therefore we just sketch the
main line of reasoning. The proof starts by focusing on the
setZ1

p , since the generalization to an arbitraryM is straight-
forward. Firstly we compute the conjugate of the rank:

φ∗(Y) = sup
‖X‖≤1

(〈Y,X〉 − φ(X)) , (21)

with φ(X) = rank(X). Since the scalar product is defined
as 〈Y,X〉 = Tr

(
Y>X

)
we write:

φ∗(Y) = sup
‖X‖≤1

(
Tr
(
Y>X

)
− Rank(X)

)
, (22)

Using von Neumann’s trace theorem, i.e.:

Tr
(
Y>X

)
≤

p∑
i=1

σi(Y)σi(X), (23)



where σi denotes the i-th singular value, we get to the fol-
lowing result:

φ∗(Y) =

p∑
i=1

(σi(Y)− 1)+ , (24)

where (y)+ is defined as (y)+ = max{y, 0}. The computa-
tion of φ∗∗ from φ∗ follows a similar reasoning. The main
difference is that

φ∗∗(Z) = sup
Y

(
p∑
i=1

σi(Z)σi(Y)−

(
r∑
i=1

σi(Y)− r

))
,

diverges for ‖Z‖ > 1, and therefore can only be com-
puted for Z ∈ Z1

p . In that case we obtain the desired result
(see (Fazel 2002) for details):

φ∗∗(Z) = ‖Z‖∗, (25)

concluding the proof.

6.3. The derivative with respect to L1

Definition 2 (Fréchet derivative) Let V and W be two
Banach spaces, and f : U ⊂ V → W , where U is an
open set of V . f is Fréchet differentiable at x ∈ U is there

exists an bounded linear operator T : V →W such that.

lim
h→0

‖f(x+ h)− f(x)− Th‖W
‖h‖V

= 0, (26)

where ‖ · ‖V and ‖ · ‖W denote the norms of V and W .

Since ZMp is a Hilbert (and therefore Banach) space, the
previous definition can be applied to our case. In particular
we introduce the following lemma:

Lemma 3 Let Φ ∈ ZMp , Q ∈ Rm×r and L ∈ ZMr .
The Fréchet derivative of f : ZMr → R defined as
f(L) = ‖Φ− LQ>‖2V =

〈
Φ− LQ>,Φ− LQ>

〉
is T =

2
(
LQ>Q−ΦQ

)
seen as a linear operator ZMr → R.

Proof The proof is straightforward from the definition.
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